• Title/Summary/Keyword: Weisbach resistance coefficient

Search Result 5, Processing Time 0.02 seconds

Numerical Simulation of Hydraulic Jump (도수의 수치 모의)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.749-762
    • /
    • 2023
  • A depth-integrated model with an approximate Riemann solver for flux computation of the shallow water equations was applied to hydraulic jump experiments. Due to the hydraulic jump, different flow regimes occur simultaneously in a single channel. Therefore, the Weisbach resistance coefficient, which reflects flow conditions rather than the Manning roughness coefficient that is independent of depth or flow, has been employed for flow resistance. Simulation results were in good agreement with experimental results, and it was confirmed that Manning coefficients converted from Weisbach coefficients were appropriately set in the supercritical and subcritical flow reaches, respectively. Limitations of the shallow water equations that rely on hydrostatic assumptions have been revealed in comparison with hydraulic jump experiments, highlighting the need for the introduction of a non-hydrostatic shallow-water flow model.

Predicting Flow Resistance Coefficients in Water Supply Mains (주변환경을 고려한 상수관망의 관 마찰손실계수 산정)

  • 손광익
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.223-231
    • /
    • 1996
  • For the most efficient operation of water mains, 124 head losses in domestic water supply steel mains were measured to provide the values of friction coefficient and the variable affecting the deterioration rate of Hazen Williams' and Darcy-Weisbach's friction coefficient. The experimental results show that pipe age is governing the friction coefficient of large mains (Diameter > 1100 mm). On the other hands, pipe age and pipe diameter are affecting the variation of carrying capacity for small mains (Diameter < 1100 mm). The friction coefficient of water mains in foreign countries is higher than that in Korea by about 5 to 10 in Hazen Williams' C value. The growing rate of roughness height of domestic water main is about 0.41 mm/year which is higher than the average of United States of America. So further study is required to find out what causes the serious deterioration rate.

  • PDF

Determination of Resistance Coefficients Using Field Measurements in Natural Rivers (자연하천 현장자료를 이용한 저항계수의 결정)

  • Lee, Jong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.139-147
    • /
    • 2012
  • This study is derived relationships of the resistance coefficients of Darcy-Weisbach and Manning for flow resistance and the dimensionless velocity using many field measurements for 1,875 rivers consist of sand 179, gravel 992, cobble 651 and boulder 53 channels in natural rivers, respectively. The relationships of power law forms are developed as a function of flow discharge, friction slope, and relative submergence by the regression and the semi-empirical method. The measurements distribution of Manning resistance coefficients by the Box-Whisker Plots show the values which ranges from 0.004~0.151 for sand, 0.008~0.250 for gravel, 0.015~0.327 for cobble, 0.023~0.444 for boulder in natural rivers, respectively. Relationships of these semi-empirical and resistance coefficients will be useful to give information in hydraulic engineering.

Determination of Equivalent Roughness for Estimating Flow Resistance in Stabled Gravel-Bed River: II. Review of Model Applicability

  • Park, Sang-Woo;Lee, Sin-Jae;Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1211-1220
    • /
    • 2008
  • In this study, we estimated, the equivalent roughness using an estimation model, which considered grain distribution on the bed and the protrusion height of the grains. We also reviewed the appropriateness of the estimated equivalent roughness at the Goksung and Gurey station in the Seomjin River. To review the appropriateness of this model, we presented the water level-discharge relation curve applying the equivalent roughness to the flow model and compared and reviewed it to observed data. Also, we compared and reviewed the observed data by estimating the Manning coefficient n, the Chezy coefficient C, and the Darcy-Weisbach friction coefficient f by the equivalent roughness. The calculation results of the RMSE showed within 5% error range in comparison with observed value. Therefore the estimated equivalent roughness values by the model could be proved appropriate.

Derivation of Roughness Coefficient Relationships Using Field Data in Vegetated Rivers (식생하천의 현장자료를 이용한 조도계수 관계식 유도)

  • Lee, Jong-Seok;Julien, Pierre Y.;Kim, Jae-Hoon;Lee, Tae-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.137-149
    • /
    • 2012
  • Field measurements of resistance to flow are analyzed for 739 rivers vegetated with grass (281 channels), shrubs (150 channels) and trees (308 channels). The measured distribution of Manning roughness coefficients ranges from 0.015~0.250 for grass, 0.016~0.250 for shrubs, 0.018~0.310 for trees. Significant trends are obtained between Darcy-Weisbach (or Manning roughness coefficients) and flow discharge, friction slope, and relative submergence. The regression equations for Darcy-Weisbach and Manning roughness coefficients in vegetated rivers are: $f_{veg}=0.436Q^{-0.363}$, $f_{veg}=3.305S_f^{0.508}$, and $n_{veg}=0.061Q^{-0.124}$, $n_{veg}=0.144S_f^{0.199}$, $V=5.3(h/d_{50})^{1/8.3}{\sqrt{ghS_f}}$, $\sqrt{8/f}(=V/u*)=5.75log(5h/d_{50})$, respectively. These semi-empirical relationships should be useful for hydraulic engineering practice.