• Title/Summary/Keyword: Weir management

Search Result 101, Processing Time 0.028 seconds

Flood Risk Management for Weirs: Integrated Application of Artificial Intelligence and RESCON Modelling for Maintaining Reservoir Safety

  • Idrees, Muhammad Bilal;Kim, Dongwook;Lee, Jin-Young;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.167-167
    • /
    • 2020
  • Annual sediment deposition in reservoirs behind weirs poses flood risk, while its accurate prediction remains a challenge. Sediment management by hydraulic flushing is an effective method to maintain reservoir storage. In this study, an integrated approach to predict sediment inflow and sediment flushing simulation in reservoirs is presented. The annual sediment inflow prediction was carried out with Artificial Neural Networks (ANN) modelling. RESCON model was applied for quantification of sediment flushing feasibility criteria. The integrated approach was applied on Sangju Weir and also on estuary of Nakdong River (NREB). The mean annual sediment inflow predicted at Sangju Weir and NREB was 400,000 ㎥ and 170,000 ㎥, respectively. The sediment characteristics gathered were used to setup RESCON model and sediment balance ratio (SBR) and long term capacity ratio (LTCR) were used as flushing efficiency indicators. For Sangju Weir, the flushing discharge, Qf = 140 ㎥/s with a drawdown of 5 m, and flushing duration, Tf = 10 days was necessary for efficient flushing. At NREB site, the parameters for efficient flushing were Qf = 80 ㎥/s, Tf = 5 days, N = 1, Elf = 2.24 m. The hydraulic flushing was concluded feasible for sediment management at both Sangju Weir and NREB.

  • PDF

Analysis of submerged flow characteristics of the improved-pneumatic-movable weir through the laboratory experiments (개량형 공압식 가동보의 잠김흐름 특성 분석을 위한 실험연구)

  • Lee, Kyung Su;Jang, Chang-Lae;Lee, Namjoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.615-623
    • /
    • 2016
  • This Study calculated the Submerged Flow Characteristics and Discharge coefficient by the rising angular change of the Improved-Pneumatic-Movable. According to the result, the smaller the ratio of weir height and weir length (L/W) or the weir standing angle, the bigger of the downstream head ($H_2$). The change of discharge reduction factor ($Q_s/Q_1$), by the hight from weir crest to downstream surface and the ratio form weir crest to upstream water height ($h_t/H$), was decreased when the $h_t/H$ closed to number 1. Although the weir water depth of the down-stream was shallower level than the up-stream, the velocity was faster then before. And the more the flow, the less the gab between the upper and lower reaches level. And when the same flow condition, the downstream head ($H_2$) was increased when the L/W was bigger. The Submerged Flow Discharge coefficient of Improved-Pneumatic-Movable weir was made by the upstream approach flow head and the upper lower stream flow condition, not by the physical data of Movable weir.

The Change Process of River Management Policy and the Factors of Dam and River-mouth Weir's Problems in Japan (일본 하천관리정책의 변화과정과 댐.하구언 문제의 요인)

  • Ito, Tatsuya;Lee, Chul Woo
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.2
    • /
    • pp.176-188
    • /
    • 2014
  • Since the late 1990s, a nationwide movement against dam and river-mouth weir plans in Japan has been promoted with a movement against a river-mouth weir for the Nagara river(長良川). This movement has been a catalyst for institutional frameworks on the central government's dam and river-mouth weir plans. Subsequently, water resource and river management policies have entered a new phase, with provinces governors's participation in "Statements on withdrawal from dam and river-mouth weir" as well as the seizing of power by the Democratic Party. However, problems with dams and river-mouth weirs have been confused due to poor countermeasures from the Democratic Party and to the Liberal Democratic Party(LDP)'s return to power. The fundamental causes on this situation are the non-establishment of fiscal norms for public projects and the rigidity of the water-right allocation system in Jananese policy-making processes. To successfully settle future policy on water resources and rivers, the first priority is to prepare specific institutional frameworks on finance of public projects and to organize a practical policy coordination system among government organizations. These policy tasks provide implications for river and water management policy in Korea.

  • PDF

Analysis of Storage and Flood Control Effects by Underflow Type of Multi-stage Movable Weir (하단배출형 가동보의 다단 배치에 의한 저류 및 홍수조절 효과 분석)

  • Lee, Ji Haeng;Han, Il Yeong;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.294-301
    • /
    • 2016
  • The underflow type movable weirs were arranged in a multi-stage way at a section of the Chiseong River, a tributary of Geum River, where flooding is observed frequently. The flood control and the movable weir management levels were compared with the occasions of installing the existing weir for analysis. The peak discharge decreased by a maximum of 97% for the underflow type movable weir, and the downstream flood elevation decreased by a maximum of 82%. The amount of storage also increased by a maximum of 463% by the distribution and storage functions of the multi-stage arrangement of the underflow type movable weirs. It is possible to suggest that the management level of each movable weir for the target storage of the reach and the flood reduction level through the relationship among this storage, downstream peak flood elevation, and peak flow.

A Comparative Study on Hydraulic Jump and Specific Energy Losses at Downstream According to the Weir Discharge Types (보 유출형태에 따른 하류부 도수 및 비에너지 손실에 관한 비교 연구)

  • Park, Hyo-Seon;Yoon, Geun-Ho;Koo, Bon-Jin;Choi, Gye-Woon
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.149-157
    • /
    • 2013
  • The weirs built so far are mainly overflow type weirs overflowing to the upstream. Main advantages of overflow type weirs are, effective water resources management and easy design, construction and maintenance due to many accumulated studies. However, due to the special feature of the overflow type weir where water overflows through the upstream of the weir, the silt coming from the upstream is not discharged to the downstream of the weir. This increases the river bed and reduces the reservoir capacity, and as a result, the weir loses its function. A underflow type weir with a water gate has been implemented in order to solve such sediment deposit and weir maintenance problems. However due to the design problem of recently constructed underflow type weirs, the river bed of the downstream of a weir has been scoured. And this leds to a structural problem. In this study, the flow characteristics of overflow type weirs and underflow type weir, hydraulic jump length analysis depending on change of water depth and the amount of specific energy loss generated per unit length depending on a weir type have been compared and analyzed, for the effective design and management of the weirs. The experiment results show that, when identical upstream conditions of underflow type weir and an overflow type weir were maintained, the hydraulic jump length was up to twice longer with Fr(Froude number) 3.5 of the hydraulic jump length at the underflow type weir, and the hydraulic jump length gradually decreased as the downstream water depth increased. The comparative analysis result of the amount of specific energy loss generated per unit length showed that the amount of energy loss per unit length was twice higher for an overlfow type weir than a underflow type weir. Therefore, in case of a underflow type facility, an additional energy reduction facility is determined to be necessary for safety of water construction structures.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

A Study on the Characteristics of Depositional Landform Change in the Geum River Channel Using Unmanned Aerial Vehicle: Focusing on Before and After the Opening Gate of Gongju Weir (무인항공기를 활용한 금강 하도내의 퇴적지형 변화 특성 연구: 공주보 개방 전·후를 중심으로)

  • Yoon, Hye-Yeon;Yun, Kwang-Sung;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.1-13
    • /
    • 2021
  • In this study is aerial photos and UAV(Unmanned Aerial Vehicle) images were used to analyzed the characteristics of depositional landform changes in the Geum river channels before and after the opening gate of Gongju weir. Based on the depositional landform classification result, the main stream and the bare land occupied most of the area in all periods, and also found that the main stream, mid-channel island, and sand bar occupied a greater degree of area increase or decrease compared to other landforms in the classification items. As a result of analyzing the characteristics of depositional landform changes before and after the opening gate of Gongju weir, it is judged that the depositional landforms have changed due to the decreased water level of the Geum river after the opening of the weir, the summer rainy season and typhoons, river stabilization after the effluence of Daecheong dam, supply and deposition of river sediments and fixation of vegetation. The results derived from this study can be used as basic data for the study of river depositional landforms and the establishment of management and conservation plans for the landforms in river channels.

Characteristics of Nitro-nutrients and Phytoplankton Dynamics in the Yeongsan River after Weir Construction (보 건설 이후 영산강 보 구간에서의 질소계열 영양염류 및 식물플랑크톤 동태)

  • Seo, Kyung-Ae;Na, Jeong-Eun;Ryu, Hui-Seong;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.423-430
    • /
    • 2018
  • Insomuch as it is important to manage water quality, from the perspective of water management, it is essential to understand the effect of the weirs on water quality and phytoplankton dynamics in various regions. The purpose of this study is to investigate the characteristics of nitro-nutrients, as well as occurrences and succession patterns of phytoplankton, in the river sections of the two weirs in the Yeongsan River for the five years (from 2012 to 2016) after the weir construction. In respect to this data, the average water temperature measured at the representative point in the section of the Seungchon Weir ($17.1^{\circ}C$) was higher than that of the Juksan Weir ($16.6^{\circ}C$) by comparison. By way of an analysis of this data, it was found that the water quality variables such as, organic matter, nitrogen nutrients and phosphorus nutrients were improved gradually during the period, but the degree of the improvement differs as noted and measured between the weirs. Under the circumstances, it is especially noted that the $NH_3-N$ concentration was higher for the point of the Seungchon Weir (2.204 mg/L) than that of the Juksan Weir (1.157 mg/L). This indicates that effluent as seen from sewage treatment plants and hydrological feature near the densely population area, could be the main cause for the incidence of water pollution in the upstream section of the Seungchon Weir. Additionally, the phytoplankton analysis showed that a relative abundance of diatoms and green algae were 56.9 % and 25.8 % respectively. However, it is noted that the cyanobacteria was measured lower as 10.7 %. Also, in the study sites cell density and occurrence frequency of cyanobacteria were relatively lower than compared to the same measurements noted in other rivers.

Analysis of the Effect of Dredging and Weirs on Bed Change in the Nakdong River and its Tributary using HEC-6 (HEC-6를 이용한 준설 및 보로 인한 낙동강 본류 및 지류 하상변화 분석)

  • Ahn, Jung Min;Kwak, Sunghyun;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.743-756
    • /
    • 2015
  • It is necessary to evaluate the effect of dredging and weir operation on the flow and long-term bed change for river management. Especially, large scale river treatment project, with dredging or weir installation and operation, can increase the instability of riverbed in tributaries as well as mainstream. This study focuses on the effect of weir installation and dredging on the long-term bed change in Nakdong river (Gangjeong- Goryeong Weir~Dalseong Weir) and its tributary (Geumho river). HEC-6 model has been used to analyze the amount of long-term bed change and sediment transport resulted from the river treatment including dredging or weir installation. From the result, it was concluded that a large scale river treatment can accelerate and increase the long-term bed change both in mainstream and tributary.

The Effect of for Major River Project and Kumho River on Nakdong River's Water Quality - Focused on Kangjung-Koryung Weir (4대강 사업과 금호강의 수질이 낙동강 본류에 미치는 영향에 대한 연구 - 강정고령보 공사현장을 중심으로)

  • Hwang, Sam-Jin;Bae, Hun-Kyun;Kim, Hak-Yoon
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.695-703
    • /
    • 2013
  • In this study, the effects of four major river project and Kumho River, second biggest branch of Nakdong River, were investigated to provide basic data for proper management of Nakdong River's water quality. Daily sampling processes at three different points, Munsanri (the upper side of Kangjung-Koryung weir), Kangchang (the outlet of the Kumho River) and Samunjin (the lower side of Kangjung-Koryung weir and junction of Kumho River and Nakdong River), were conducted from May 1st 2011 to Sep. 4th 2011. Water samples were analyzed for nine factors, DO, BOD, COD, T-N, T-P, pH, turbidity, SS, and coliform. As demonstrated by the results, concentrations of BOD, T-N, T-P and coliform at Nakdong River were affected by water quality of Kumho River while SS and turbidity were affected by constructions for Kangjung-Koryung weir. Further studies, for example, affects of wastewater treatment facilities, should be followed.