• 제목/요약/키워드: Weighted-sum Approach

검색결과 77건 처리시간 0.028초

Pedestrian identification in infrared images using visual saliency detection technique

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.615-618
    • /
    • 2019
  • Visual saliency detection is an important part in various vision-based applications. There are a myriad of techniques for saliency detection in color images. However, the number of methods for saliency detection in infrared images is inadequate. In this paper, we introduce a simple approach for pedestrian identification in infrared images using saliency. The input image is thresholded into several Boolean maps, an initial saliency map is then calculated as a weighted sum of created Boolean maps. The initial map is further refined by using thresholding, morphology operation, and Gaussian filter to produce the final, high-quality saliency map. The experiment showed that the proposed method produced high performance results when applied to real-life data.

The Relationship Between Financial Condition and Business Cycle in Mongolia

  • Doojav, Gan-Ochir;Purevdorj, Munkhbayar
    • East Asian Economic Review
    • /
    • 제23권2호
    • /
    • pp.203-223
    • /
    • 2019
  • This paper examines the interactions between financial conditions and business cycles in Mongolia, a small open economy, heavily depending on commodity exports. We construct two financial conditions indexes based on the reduced form IS model and the vector autoregression (VAR) model as surveillance tools to quantify the degree of the financial conditions. We find that real short-term interest rate and real effective exchange rate gap get a higher weight in the FCIs. Both business and financial cycles are often more pronounced in Mongolia, and financial condition is dependent of the financial and monetary policies in place. The analysis of the predictive power of the FCIs for business cycles shows that they have predictive information for the near-term economic activities. FCIs are also helpful in signaling inflation turning points.

셀제조시스템 설계를 위한 부품-기계 셀의 형성기법 (A Method of Component-Machine Cell Formation for Design of Cellular Manufacturing Systems)

  • 조규갑;이병욱
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.143-151
    • /
    • 1996
  • The concept of cellular manufacturing is to decompose a manufacturing system into subsystems, which are easier to manage than the entire manufacturing system. The objective of cellular manufacturing is to group parts with similar processing requirements into part families and machines into cells which meet the processing needs of part families assigned to them. This paper presents a methodology for cell formation based on genetic algorithm which produces improved cell formation in terms of total moves, which is a weighted sum of both intercell moves and intracell moves. A sample problem is solved for two, three and four cells with an approach based on genetic algorithms.

  • PDF

이상 회체가스 가중합산모델을 적용한 미분탄 연소의 수치적 연구 (Numerical Study on Pulverized Coal Combustion Applying Two-Phase WSGGM)

  • 유명종;강신재;백승욱
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1368-1379
    • /
    • 2000
  • A numerical study on swirling pulverized coal combustion in an axisymmetric enclosure is carried out by applying the 2-phase weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard and RNG k-${\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase. The eddy-dissipation model is employed for the reaction rate for gaseous mixture, and the single-step and two-step first-order reaction model for the devolatilization process for coal. Special attention is given to establish the thermal boundary conditions on radiative transfer equation By comparing the numerical results with experimental ones, the radiation model used here is confirmed and found to provide an alternative for simulating the radiative transfer.

Well-Conditioned 관측기 설계 - A Linear Matrix Inequality Approach - (Design of the Well-Conditioned Observer - A Linear Matrix Inequality Approach -)

  • 정종철;허건수
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.503-510
    • /
    • 2004
  • In this paper, the well-conditioned observer for a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic uncertainties such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic uncertainties such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_{2}$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic uncertainties. In stochastic viewpoints, the estimation variance represents the robustness to the stochastic uncertainties and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

NSGA-II Technique for Multi-objective Generation Dispatch of Thermal Generators with Nonsmooth Fuel Cost Functions

  • Rajkumar, M.;Mahadevan, K.;Kannan, S.;Baskar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.423-432
    • /
    • 2014
  • Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is applied for solving Combined Economic Emission Dispatch (CEED) problem with valve-point loading of thermal generators. This CEED problem with valve-point loading is a nonlinear, constrained multi-objective optimization problem, with power balance and generator capacity constraints. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a nonsmooth optimization problem. To validate its effectiveness of NSGA-II, two benchmark test systems, IEEE 30-bus and IEEE 118-bus systems are considered. To compare the Pareto-front obtained using NSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Comparison with other optimization techniques showed the superiority of the NSGA-II approach and confirmed its potential for solving the CEED problem. Numerical results show that NSGA-II algorithm can provide Pareto-front in a single run with good diversity and convergence. An approach based on Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) is applied on non-dominated solutions obtained to determine Best Compromise Solution (BCS).

A Finite Capacity Material Requirement Planning System for a Multi-Stage Assembly Factory: Goal Programming Approach

  • Wuttipornpun, Teeradej;Yenradee, Pisal;Beullens, Patrick;van Oudheusden, Dirk L.
    • Industrial Engineering and Management Systems
    • /
    • 제4권1호
    • /
    • pp.23-35
    • /
    • 2005
  • This paper aims to develop a practical finite capacity MRP (FCMRP) system based on the needs of an automotive parts manufacturing company in Thailand. The approach includes a linear goal programming model to determine the optimal start time of each operation to minimize the sum of penalty points incurred by exceeding the goals of total earliness, total tardiness, and average flow-time considering the finite capacity of all work centers and precedence of operations. Important factors of the proposed FCMRP system are penalty weights and dispatching rules. Effects of these factors on the performance measures are statistically analyzed based on a real situation of an auto-part factory. Statistical results show that the dispatching rules and penalty weights have significant effects on the performance measures. The proposed FCMRP system offers a good tradeoff between conflicting performance measures and results in the best weighted average performance measures when compared to conventional forward and forward-backward finite capacity scheduling systems.

Face Spoofing Attack Detection Using Spatial Frequency and Gradient-Based Descriptor

  • Ali, Zahid;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.892-911
    • /
    • 2019
  • Biometric recognition systems have been widely used for information security. Among the most popular biometric traits, there are fingerprint and face due to their high recognition accuracies. However, the security system that uses face recognition as the login method are vulnerable to face-spoofing attacks, from using printed photo or video of the valid user. In this study, we propose a fast and robust method to detect face-spoofing attacks based on the analysis of spatial frequency differences between the real and fake videos. We found that the effect of a spoofing attack stands out more prominently in certain regions of the 2D Fourier spectra and, therefore, it is adequate to use the information about those regions to classify the input video or image as real or fake. We adopt a divide-conquer-aggregate approach, where we first divide the frequency domain image into local blocks, classify each local block independently, and then aggregate all the classification results by the weighted-sum approach. The effectiveness of the methodology is demonstrated using two different publicly available databases, namely: 1) Replay Attack Database and 2) CASIA-Face Anti-Spoofing Database. Experimental results show that the proposed method provides state-of-the-art performance by processing fewer frames of each video.

Extreme value modeling of structural load effects with non-identical distribution using clustering

  • Zhou, Junyong;Ruan, Xin;Shi, Xuefei;Pan, Chudong
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.55-67
    • /
    • 2020
  • The common practice to predict the characteristic structural load effects (LEs) in long reference periods is to employ the extreme value theory (EVT) for building limit distributions. However, most applications ignore that LEs are driven by multiple loading events and thus do not have the identical distribution, a prerequisite for EVT. In this study, we propose the composite extreme value modeling approach using clustering to (a) cluster initial blended samples into finite identical distributed subsamples using the finite mixture model, expectation-maximization algorithm, and the Akaike information criterion; (b) combine limit distributions of subsamples into a composite prediction equation using the generalized Pareto distribution based on a joint threshold. The proposed approach was validated both through numerical examples with known solutions and engineering applications of bridge traffic LEs on a long-span bridge. The results indicate that a joint threshold largely benefits the composite extreme value modeling, many appropriate tail approaching models can be used, and the equation form is simply the sum of the weighted models. In numerical examples, the proposed approach using clustering generated accurate extrema prediction of any reference period compared with the known solutions, whereas the common practice of employing EVT without clustering on the mixture data showed large deviations. Real-world bridge traffic LEs are driven by multi-events and present multipeak distributions, and the proposed approach is more capable of capturing the tendency of tailed LEs than the conventional approach. The proposed approach is expected to have wide applications to general problems such as samples that are driven by multiple events and that do not have the identical distribution.