• Title/Summary/Keyword: Weighted vector

Search Result 225, Processing Time 0.023 seconds

Fuzzy c-Regression Using Weighted LS-SVM

  • Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper we propose a fuzzy c-regression model based on weighted least squares support vector machine(LS-SVM), which can be used to detect outliers in the switching regression model while preserving simultaneous yielding the estimates of outputs together with a fuzzy c-partitions of data. It can be applied to the nonlinear regression which does not have an explicit form of the regression function. We illustrate the new algorithm with examples which indicate how it can be used to detect outliers and fit the mixed data to the nonlinear regression models.

  • PDF

Modified distance measures for PCA-based face recognition

  • Song Young-Jun;Kim Young-Gil;Kim Nam
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.1-4
    • /
    • 2005
  • In this paper, we compare 5 weighted distance measures between feature vectors with respect to the recognition performance of the principal component analysis(PCA)-based face recognition method, and propose modified weighted distance. The proposed method was modification of z, the weighted vector. The simulation was performed using the ORL face database, showed the best result for some weighted distances such as weighted manhattan, weighted angle-based, weighted modified manhattan, and weighted modified SSE. We also showed that using some various values of z(weighted values) we can achieve better recognition results that using the existing weighted value.

  • PDF

Fall Recognition Algorithm Using Gravity-Weighted 3-Axis Accelerometer Data (3축 가속도 센서 데이터에 중력 방향 가중치를 사용한 낙상 인식 알고리듬)

  • Kim, Nam Ho;Yu, Yun Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.254-259
    • /
    • 2013
  • A newly developed fall recognition algorithm using gravity weighted 3-axis accelerometer data as the input of HMM (Hidden Markov Model) is introduced. Five types of fall feature parameters including the sum vector magnitude(SVM) and a newly-defined gravity-weighted sum vector magnitude(GSVM) are applied to a HMM to evaluate the accuracy of fall recognition. A GSVM parameter shows the best accuracy of falls which is 100% of sensitivity and 97.96% of specificity, and comparing with SVM, the results archive more improved recognition rate, 5.2% of sensitivity and 4.5% of specificity. GSVM shows higher recognition rate than SVM due to expressing falls characteristics well, whereas SVM expresses the only momentum.

Weighted Parameter Analysis of L1 Minimization for Occlusion Problem in Visual Tracking (영상 추적의 Occlusion 문제 해결을 위한 L1 Minimization의 Weighted Parameter 분석)

  • Wibowo, Suryo Adhi;Jang, Eunseok;Lee, Hansoo;Kim, Sungshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.101-103
    • /
    • 2016
  • Recently, the target object can be represented as sparse coefficient vector in visual tracking. Due to this reason, exploitation of the compressibility in the transform domain by using L1 minimization is needed. Further, L1 minimization is proposed to handle the occlusion problem in visual tracking, since tracking failures mostly are caused by occlusion. Furthermore, there is a weighted parameter in L1 minimization that influences the result of this minimization. In this paper, this parameter is analyzed for occlusion problem in visual tracking. Several coefficients that derived from median value of the target object, mean value of the arget object, the standard deviation of the target object are, 0, 0.1, and 0.01 are used as weighted parameter of L1 minimization. Based on the experimental results, the value which is equal to 0.1 is suggested as weighted parameter of L1 minimization, due to achieved the best result of success rate and precision performance parameter. Both of these performance parameters are based on one pass evaluation (OPE).

  • PDF

A Study on the Application of Building Population Weighting to ERAM Model Based on GIS Data (GIS 데이터에 기반한 건물인구 가중치 적용 ERAM 모델에 관한 연구)

  • Mun, Sunghoon;Piao, Gensong;Choi, Jaepil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • This study proposes a new ERAM model with building population weighting. Previous studies of applying weightings on ERAM model on the scale of urban space were focused on the relationship between the street and the human behavior. However, this study focuses on the influences that buildings give to human behavior and develops a building population weighted ERAM model. This research starts by analyzing ERAM model to its basic compositions, which are adjacency matrix and row vector. It applies building population weighting to the row vector, while previous studies put weightings in the adjacency matrix. Building population weighted ERAM model calculates the building population weighting based on GIS data, which provides objective and massive data of buildings in the urban scale. For the verification of the model, Insa-dong and Myeong-dong were analyzed with both ERAM model and building population weighted ERAM model. The results were analyzed through the correlation test with actual pedestrian population data of the two districts. As a result, the explanation ability of building population weighted ERAM model for the pedestrian population turned out to be higher than the ERAM model. Since building population weighted ERAM model has the structure that can be combined with other weighted ERAM models, it is expected to develop a multi-weighted ERAM model with better explanation ability as a further study.

Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System

  • Alabdallah, Alaeddin;Awad, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5143-5158
    • /
    • 2018
  • Improving the intrusion detection system (IDS) is a pressing need for cyber security world. With the growth of computer networks, there are constantly daily new attacks. Machine Learning (ML) is one of the most important fields which have great contribution to address the intrusion detection issues. One of these issues relates to the imbalance of the diverse classes of network traffic. Accuracy paradox is a result of training ML algorithm with imbalanced classes. Most of the previous efforts concern improving the overall accuracy of these models which is truly important. However, even they improved the total accuracy of the system; it fell in the accuracy paradox. The seriousness of the threat caused by the minor classes and the pitfalls of the previous efforts to address this issue is the motive for this work. In this paper, we consolidated stratified sampling, cost function and weighted Support Vector Machine (WSVM) method to address the accuracy paradox of ID problem. This model achieved good results of total accuracy and superior results in the small classes like the User-To-Remote and Remote-To-Local attacks using the improved version of the benchmark dataset KDDCup99 which is called NSL-KDD.

Type I projection sum of squares by weighted least squares (가중최소제곱법에 의한 제1종 사영제곱합)

  • Choi, Jaesung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.423-429
    • /
    • 2014
  • This paper discusses a method for getting Type I sums of squares by projections under a two-way fixed-effects model when variances of errors are not equal. The method of weighted least squares is used to estimate the parameters of the assumed model. The model is fitted to the data in a sequential manner by using the model comparison technique. The vector space generated by the model matrix can be composed of orthogonal vector subspaces spanned by submatrices consisting of column vectors related to the parameters. It is discussed how to get the Type I sums of squares by using the projections into the orthogonal vector subspaces.

Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection

  • Wang, Qianghui;Hua, Wenshen;Huang, Fuyu;Zhang, Yan;Yan, Yang
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.210-220
    • /
    • 2020
  • Aiming at the problem that the Local Sparse Difference Index algorithm has low accuracy and low efficiency when detecting target anomalies in a hyperspectral image, this paper proposes a Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection algorithm, to improve detection accuracy for a hyperspectral image. First, the band subspace is divided according to the band correlation coefficient, which avoids the situation in which there are multiple solutions of the sparse coefficient vector caused by too many bands. Then, the appropriate double-window model is selected, and the background dictionary constructed and weighted according to Euclidean distance, which reduces the influence of mixing anomalous components of the background on the solution of the sparse coefficient vector. Finally, the sparse coefficient vector is solved by the collaborative representation method, and the sparse difference index is calculated to complete the anomaly detection. To prove the effectiveness, the proposed algorithm is compared with the RX, LRX, and LSD algorithms in simulating and analyzing two AVIRIS hyperspectral images. The results show that the proposed algorithm has higher accuracy and a lower false-alarm rate, and yields better results.

Estimating the Term Structure of Interest Rates Using Mixture of Weighted Least Squares Support Vector Machines (가중 최소제곱 서포트벡터기계의 혼합모형을 이용한 수익률 기간구조 추정)

  • Nau, Sung-Kyun;Shim, Joo-Yong;Hwang, Chang-Ha
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.159-168
    • /
    • 2008
  • Since the term structure of interest rates (TSIR) has longitudinal data, we should consider as input variables both time left to maturity and time simultaneously to get a more useful and more efficient function estimation. However, since the resulting data set becomes very large, we need to develop a fast and reliable estimation method for large data set. Furthermore, it tends to overestimate TSIR because data are correlated. To solve these problems we propose a mixture of weighted least squares support vector machines. We recognize that the estimate is well smoothed and well explains effects of the third stock market crash in USA through applying the proposed method to the US Treasury bonds data.