• Title/Summary/Keyword: Weighted pseudoinverse

Search Result 5, Processing Time 0.021 seconds

Torque Distribution Control of 3RRR Redundant Parallel Robot (여유구동 3RRR 병렬로봇의 힘분배 제어에 관한 연구)

  • Lee, Sang-Moon;Lee, Jeh-Won;Shim, Ho-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.72-79
    • /
    • 2008
  • In the redundant actuation system which has more actuators than a system's mobility, there are various method to determine actuated torques because those are not determined uniquely. This paper presents a torque distribution method using weighted-pseudoinverse to optimize the maximum torque of various actuated inputs of the redundant system. The various weighting factor of weighted-pseudoinverse is studied to reduce maximum actuated torque. This method is experimentally applied to 3RRR parallel robot, which shows that presented method can efficiently reduce the maximum actuated torque.

Redundancy Trajectory Generation for Biped Robot Manipulators (2족 보행로봇을 위한 잉여 궤적 생성)

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.739-744
    • /
    • 2008
  • Human-like biped robot is a representative multi-links manipulator and undoubted redundancy system. However many researchers separate biped robot into each limb and analyze the members individually for the convenience analysis. This approach is not desirable for natural trajectory generation and energy optimization. This paper proposes the analysis method considering both legs together and the weighted pseudoinverse optimizing energy consumption.

  • PDF

Compliance Paradigms for Kinematically Tedundant Manipulators

  • Park, Jonghoon;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.914-919
    • /
    • 1993
  • The kinematic resolutions of redundancy is addressed in this paper. The governing equation for quasistatic behavior of compliance governed redundant manipulators is formulated and the repeatable property of the manipulator is proposed. Then the compliance paradigm is used to resolve the redundancy in a repeatable way. The compliance paradigm is one under which the controller simulates the imaginary manipulator which is governed to move by real joint stiffness. The equation is expressed as the weighted pseudoinverse with the configuration dependent weighting matrix. Algorithmic singularities arisen from this scheme are also discussed.

  • PDF

Optimum Yaw Moment Distribution with ESC and AFS Under Lateral Force Constraint on AFS (AFS 횡력 제한조건 하에서 ESC와 AFS를 이용한 최적 요 모멘트 분배)

  • Yim, Seongjin;Lee, Jungjae;Cho, Sung Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.527-534
    • /
    • 2015
  • This paper presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. The control yaw moment is calculated using a sliding mode control. The tire forces generated by ESC and AFS are determined using weighted pseudo-inverse based control allocation (WPCA) in order to generate the control yaw moment. On a low friction road, AFS is not effective when the lateral tire forces of front wheels are easily saturated. To solve problem, the lateral force of AFS is limited to its maximum and the braking of ESC is applied with WPCA. To evaluate the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, $CarSim^{(R)}$. From the simulation, it was verified that the proposed method could enhance the maneuverability and lateral stability if the lateral force of AFS exceeds its maximum.