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ABSTRACT

The kinematic resolutions of redundancy is addressed
in this paper. The govering equation for quasistatic be-
havior of compliance governed redundant manipulators is
formulated and the repeatable property of the manipula-
tor is proposed. Then the compliance paradigm is used to
resolve the redundancy in a repeatable way. The compli-
ance paradigm is one under which the controller simulates
the imaginary manipulator which is governed to move
by real joint stiffness. The equation is expressed as the
weighted pseudoinverse with the configuration dependent
weighting matrix. Algorithmic singularities arisen from
this scheme are also discussed.

1 Introduction

A robotic system is considered to have kinematic redun-
dancy if the dimension of its configuration space is greater
than that of its task space. From application viewpoint,
prerequisite is the inverse kinematic problem of specifying
the displacements of the joint variables algorithmically
corresponding to the position' of the hand. That kind of
algorithm is termed as the inverse kinematic resolution
scheme for redundant manipulators.

The basic idea to resolve the redundancy is to add
enough internal or external constraints which are either
explicit or implicit. The constraints can be local or in-
stantaneous in nature, or more global and can consider
the dynamics of robot or not. The constraints help to
make the system well-posed which is originally ill-posed.
Once a specific algorithm and an initial setting are cho-
sen, there should be a unique joint-space path for each
hand-space trajectory. In other words the arm should al-
ways reproduce the same joint path in case of the same
situation.

Suppose the manipulator has n degrees of freedom at
the joints and operates in an m-dimensional space (where

"The position just denotes the position and otientation of the
hand from now on.

" m < 6). Let Q be the n-dimensional configuration space
“(or joint space), W the m-dimensional operational space

(or task space), and f: Q@ — W the forward kinematic
function. We assume the manipulator be redundant, i.e.
n>m.

If ¢ = (91,92, -, ¢a)7 is a configuration and ¢ = -
(21,22, -+, Zm)7 a position, the relation can be described

as follows:

z = f(q) (H
& = J(g)¢, (2)

where J(g) is the Jacobian matrix of partial derivatives of
£, evaluated at the current configuration ¢. Since n > m,
J is a rectangular matrix having m rows and n columns.
Eq. (1) describes the relation in position level and Eq. (2)
shows the linearized or instantaneous relation in rate level
between two spaces.

The most important factors considered in the kine-
matic resolution are: (1) singularity avoidance and (2)
repeatability. A local path tracking strategy is said to be
repeatable if the configuration of the arm is driven to re-
peat itself when the hand traces a closed path. The null
motion is not allowed to retain repeatability in this defini-
tion. Nonrepeatability of the pseudoinverse method was
observed by Klein & Huang [1]. The'repeatability prob-
lem was mentioned in several other papers dealing with
redundant manipulators, but was not fully treated until
Baker & Wampler [2} used topological arguments to show
that, over a simply connected region of the workspace, a
path tracking algorithm is repeatable iff it can be de-
scribed in terms of an inverse function. Independently,
Brockett [3] stated with differential geometrical context
that repeatability is a question about the integrability of
the distribution in R™ defined by range of generalized in-
versé of J. If this distribution is integrable [4], then the
pseudoinverse approach will map closed curve in opera-

tional space into closed curves in configuration space, oth-
erwise 1t will not. Analytically, the integrability is equiv-

alent to the solvability of the partial diflerential equation
system defined by the distribution and thus the integra-
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bility guarantees the existence of local inverse function.

The application of Frobenius’ theorem over simply
connected regions, by Shamir & Yomdin [5], yiclds a com-
putable condition which is termed as the Lie bracket con-
dition(LBC). If the Lie bracket of any vector fileds in the
distribution is closed, the distribution is integrable and
induces the integral manifold whose tangent space is gen-
erated by the distribution itseif. The extended Jacobian
method was shown repeatable by their arguments, and
they also showed that some initial configurations satisfy-
ing LBC drives the manipulator by pseudoinverse control
in a repeatable manner. As a matter of fact, by Baker
and Wampler’s characterization, the algorithms based on
the resolved motion rate control method would not be
repeatable in general because the second term makes it
impossible to consider qasa single valued function of =.

the resolved rate approach is not repeatable and nor is
the pseudoinverse approach [1]. The extended Jacobian
approach can produce the repeatable trajectory but in-
duce another singularity, so called the algorithmic singu-
larity {6]. Moreover, the extended Jacobian approach suf-
fers from the high symbolic computational burden when
applied to multiple redundant spatial manipulator, as
it requires the closed forms of all equations. As a nu-
merical solution to inverse kinematic problem, Asada &
Slottine [7] suggested that the impedance control scheme
can be applied to the stable inverse kinematic solutuion.
Mussa-Ivaldi & Hogan [8] extended his idea to redundant
manipulator to attain repeatability.

In this paper, the idea is utilized that the repeatabil-
ity will be guaranteed if the resolution method simulate
certain ideal system which is originally repeatable. In
other words, the imaginary system is the model of the

kinematic resolution. The chosen imaginary system is
the compliance-governed manipulator system thus this

scheme is refered to as compliance paradigm. Under this
paradigm the pseudoinverse approach will be complemented
to attain repeatability. There are also some singularities
arisen {rom the algorithm, so called algorithmic singu-
larity. Section 2 formulates the model of the imaginary
system and present the characteristics of the system. The
repeatall)]e property is proposed in Section 3 with some
comments about algorithmic singularities. The method is
verified effective with numerical experiments with 4-DOF
planar redundant manipulator in Section 4 and Section 5
concludes this paper.

2 Quasistatic behaviors of com-

pliance governed redundant ma-

nipulators

Compliance paradigm can be used to the trajectory plan-
ning of redundant manipulators by the following scheme.
Given a manipulator to control, imagine another manip-

ulator with the joint-distributed stiffness which has the
same kinematic structure as one to be controlled (See
Fig. 1). The inverse kinematic resolution of the origi-
nal manipulator is done by immitating the motion of the
imaginary manipulator. Suppose the manipulator is now
in static equilibrium and we want to move its tip by dx.
The tip of the imaginary manipulator is then moved by
the force exterted at the tip. The force should be exactly
compatible with the tip displacement. This means that
the manipulator will be in another equilibrium when dis-
turbed by the force from the previous equilibrium. The
manipulator to be resolved follows after the imaginary
maidipulator.

To verify the validity of this paradigm, two proposi-
tions must be claimed. One is that the exact formulation
of the motion of the imaginary manipulator is possible so
that the exact simulation can be made. Since it is almost

impossible to make an imaginary system at each case, we
had better have the mathematical model to simulate the

system and apply it to resolution. The other is, moreover,
that the imaginary manipulator which is govened to move
by the real stiffness mechanism exhibits repeatability. ~

The imaginary manipulator has the characteristic that
the equilibrium configuration without any tip force is
unique. With this manipulator the equilibrium can be
changed with the force applied and it gets into another
equilibrium with the tip force statically equilibriated with
the restoring force from stiffness. One should not be mis-
conceived that given dx, applying the force calculated by
just multiplying the current tip stiffness to de¢ can cause
the manipulator to move by dx. Since the next equilib-
rium configuration is determined by the compliance at
the next state and the mapping between the configura-
tion and the operational space is nonlinear, much care
is needed. In this section, we formulate the governing
equation for static behavior of the stiffness-governed ma-
nipulator system and show that this system is repeatable.

There exist four domains related to robot kinemat-
ics and statics, or joint space Q, task space W, joint
torque T, and tip force F'. Fig. 2 describes the relations
between them and their respective tangent spaces, i.e.
incremental displacement spaces. It looks similar with
the premultiplier diagram proposed by Kim et al. {9],
but they assumed there be no change in joint variables g
and they neglected the change of Jacobian due to change
of g. In this figure, soine relations are well known like J
between dz and dg and J7 between F and T', but others
should be taken more cares.

The manipulator is assumed to act as its motion at
equlibrium states is governed by the compliance relation
as follows:

9 -4, = C(g)T, (3)

where g, is the initial equilibrium configuration without
any tip force, and C(q) is the compliance distributed at
the joint at g which can be either constant or varying.
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The above relation is implicit expression with respect
to g, so the differential relation is not dg = C(g)dr un-
less C is constant. Thus by the help of implicit function
theorem 4], if

ac
-= 4
det(T 39 T #0 (4)
then we get the differential relation as:
C
dg = (I - %—q—r)"C(q)dT. (5)

Let the transformation matrix in rhs of the equation,

c(a) = (I—%—ir)“cm)

(K(q) - K(q)‘i,—frr‘ (6)

where
K=cCc. (7N

Eq. (5) can be considered as the Taylor approximation up
to the first order and, as such, all the values are evaluated
at the present state, g, which approximate the change to
the next state, dq.

Tip force and joint torque? are related using the trans-
pose of the Jacobian:

T = J(q(r))TF. G

Since it is also implicitely expressed, with the same argu-
ments as above the following equation is derived.
aJT

dr =[I~ (—(,)TF)C‘)“JTdF (9)

T
which is satisfied whenever det(I — (%—F)C') # 0. De-
noting the term containing the derivative of the Jacobian

and the force as I, i.e.

= '———'F. - (10)
The i** column of I', TV, is given by:

aJT

I’ is geometrically interpreted as the intrinsic impedance
component due to the nonlinear mapping [8]. This comes
from the change of the Jacobian when the manipulator is
disturbed from the static equlibrium. The tip stiffness in-
duced from the joint stiffness in the imaginary manipula-
tor and the geometric stiffness term should be considered
in simulating the motion.

Adjoining Eq. (5) and Eq. (9),

I (11)

dg = Cc*(I-rcHJvdr
(K* -~ I)'JTdF, (12)
where
K*=(CcH ™ (13)

3Tip force and joint torque represent the generalized force and
totque in static state.

The incremental displacements in both spaces is ap-
proximated using the Jacobian of its forward kinematic
map as:

dz = J(q)dg
= J(K*-TI)"'JVdF. (14)
Assumtion that
det[J(K* =) 'JT1 #0 (15)

yields the following equation:
dF = K. dx (16)

by letting
K,={J(K -r)"'J". (17

K, is the tip stiffness induced by the joint stiffness and its
rate of change and the nonlinear compensation impedance.
Then the manipulator tip is ideally governed to move by

this stiffness.
The desired kinematic resolution is obtained when dF

in Eq. (16) is introduced to Eq. (12), which in form looks
alike the weighted pseudoinverse: )

dg=(K* -D)'JTJ(K - )77 de (18)

The above equation describes the joint displacement to
occur when disturbed from the present state only with the
present state. This equation does satisfy the two claims
delineated above, as is shown in the next section.

This remark will be suitable at this point. The re-
solved trajectory does not depend on the actual value
of the compliance itself, but on the ratio of the values.
When the diagonal compliance matrix is used, the ra-
tio, f.e. only (n — 1) independent parameters have to be
determined. The negative compliance element is also al-
lowed. For example, two compliance matrices opposite in
sign will generate the same trajectory, but the imaginary
force will reverse the sign to each other. . The resvlved
trajectories can be parametrized with the initial configu-
ration and the ratio of the compliance elements.

3 Repeatability of the compliance
paradigms

Following the paradigm proposed above, the inverse kine-
matics is solved if the manipulator can simulate the imag-
inary manipulator exactly. The tip force can be predicted
as follows. F is set to zero at a initial configuration that
reaches the desired initial tip position, and iterate at each
step dF'y = K.(q,)dzs and add to F to get Fiyy. The
manipulator is assumed to be governed by the compliance
mechanism as in Eq. (3).

PROPOSITION 3.1 Let f be the forward kinemalic map.
At tg, the manipulator is assumed to be in equilibrium at
qo, when the tip reaches g = f(q,). Assume that no
force exerted at ihe tip at to. Then the manipulator is
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in configuration g, at t > to if and only if the tip force
F=0.
Proof

Assume that g, is the nonsingular configuration. Suppose
that at that time, the manipulator’s configuration is gq.
Then,
9-9o=q0~ 9 =0=Clg)7

which implies that whenever C(q) is nonsingular, 7 = 0,
and since g, is not singular configuration, F = 0.

Suppose that F' = 0. Then 7 = 0, which implics that
g — qo = 0. So, we get ¢ = q,.

|

The above proposition is no more than the guarantee
of repeatability of the imaginary manipulator. To assert
the repeatability of the inverse kinematic resolution re-
quires that the tip force is zero when = @,. This comes
from the proposition below.

PROPOSITION 3.2 Let dF = K.(z)dz for dF € R™,
dz € R™. Assuming that at tg, * = xg and F = F,.
Then F(t;) = Fq iff @(t;) = xo whenever K.(x) is
nonsingular during [to,ts], t; > to.

In order to show the exactness of the formulation, the
claim should be satisfied that the manipulator will get
into another equilibrium when the tip is disturbed by the
desired displacement. The following proposition makes
certain this statement.

PROPOSITION 3.3 Let the manipulator at the joint con-
figuration q, and with the joint stiffness K(q,)is in equi-
librium with the tip force F,. Then the manipulator wili
be in another equilibrium at g, + dg, that is,

JT(q, + dg)(F + dF) = K(g, + dq)(g, + dg), (19)

where dq is such as in Eq. (18),

dg = (K — I(%—fr - r)"YJTdF,

where all quantities are evaluated at q,,.
Proof
Use Taylor’s approximation to Eq. 19 to get Eq. 12.

Algorithmic singularities are refered to singularities
arisen from the specific resolution scheme other than kine-
matic singularities, due to the noninvertibility of the whol«
system which consists of the mechanical systern and the
control system. During the mathematical derivation of
the compliance paradigm, many assumptions of nonsin-
gularity of certain matrices were made, especially on the
use of implicit function theorem to get Taylor's approxi-
mation.

Checking the derivation, the system in all is not in-
vertible whenever

A=det [J(K* - I)JT] =0 (20)

the above equation is satisfied in three cases:
e detJ =0,
e det (I - %%‘r) =0, and
o det (K" —-TI)=0.

The first of above equations is the usual kinematic singu-
larity condition. Possibility of the second can be removed
by using constant compliance values. Consider the third.
If (K* — I') is singular, zero dF does not make dg = 0.
In other words, the manipulator is able to reconfigure it-
self with tip force unchanged as there is the null space
generated by its singular direction.

4 Numerical Examples

Here we present the results of numerical simulations of
planar 4-DOF manipulators. Link lengths are 3, 3, 1, and
1 units from base to proximal link. The manipulator is
commanded to trace the circle located on the x axis. The
4-th order Runge-Kutta method was adopted for numer-
ical integration of ODE system defined by Eq. (18) with
2000 integration steps.

The commanded circle is located at (4,0)units with
radius of Junits. The initial arm configuration is (20.0000,
—52.0227, 21.0509, 60.0000)(°) corresponding to the tip
position of (7.0,0.0)units. The pseudoinverse method
(PI) with the weight I and the proposed method (CP)
with the compliance I were simulated with the governing
differential equations:

(P1) dg = JT(JIT)Vdz
(CPYdg = (I — I WJITII — )" J7) dz.

The simulation results are depicted in Figs. 3 and 4,
where (a) shows the joint space trajectories and (b) is
the graph of the tip force to simulate the imaginary ma-
nipulator along the circular trajectory. The pseudoin-
verse method leads to the configuration drift® of 184.69°
while the proposed method results in the drift of 0.00°.
Thus, the repeatability was guaranteed by the proposed
scheme not by the pseudoinverse method. Fig. 4(b) shows
the tip force of the imaginary manipulator during reso-
lution, which exhibits that the tip force becomes zero at
final configuration. Pseudoinverse method cannot simu-
late the imaginary compliance-gorverned manipulator be-
cause it does not predict the tip force which is compatible
to the desired tip displacement. The tip force also does
not return to zero, which implics that the repeatability
is broken.

The repeatability ceases to hold along any tip path en-
closing one or more singular points, which is well-known

3The configuration drift(CD) is
(X721 (9 pinat — Gignisiat)?) 2.

defined as: cCD =
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results of differential calculus [2, 4, 8]. Thus the non-
repeatability with the proposed scheme can be induced
from two causes: one is the algorithmic singularity and
the other is the non-simply connectedness of the work-
spce closed path.

5 Conclusion

A method of kinematic resolutions of redundancy called
compliance paradigm was proposed which has the re-
peatable property. When the compliance matrix is con-
stant, this scheme can complement the nonconservativ-

ity of weighted pseudoinverse approach as shown with-

numerical experiments of 4-DOF planar redundant ma-
nipulator. The governing equation of static behavior of
imaginary compliance-governed redundant manipulator
was formulated and the repeatable property was proved
also with the help of physical intuitions. Algorithmic
singularity problem seems to accompany the repeatable
behavior. With this scheme, algorithmic singularities can
be identified with the simple determinant condition and
they result in the invalidity of Taylor’s approximation up
to first order. This kind of algorithm is very effective com-
pared to the extended Jacobian method when applied to
multiple redundancy case.

The exact representation of four domains related to
robot kinematics and statics, or joint space QQ, work space
W, joint torque T, and tip force F and the relations
between them and their respective tangent space can be
easily captured with this paradigm. The nonrepeatability
‘of the pseudoinverse control can be considered that it
neglects the kinematic nonlinearity between Q and W.
The kinematic nonlinearity can be complemented by a
single correction matrix that has the physical meaning of
an apprent joint stiffness due to change of the Jacobian
and to the nonzero tip force in statical equilibrium.
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Figure 1: Compliance paradigm for kinematic resolutions
of redundancy
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tive tangent spaces
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