• Title/Summary/Keyword: Weighted Support

Search Result 208, Processing Time 0.025 seconds

Frequency Assignment Method using NFD and Graph Coloring for Backbone Wireless Links of Tactical Communications Network (통합 필터 변별도와 그래프 컬러링을 이용한 전술통신망 백본 무선 링크의 주파수 지정 방법)

  • Ham, Jae-Hyun;Park, Hwi-Sung;Lee, Eun-Hyoung;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.441-450
    • /
    • 2015
  • The tactical communications network has to be deployed rapidly at military operation area and support the communications between the military command systems and the weapon systems. For that, the frequency assignment is required for backbone wireless links of tactical communications network without frequency interferences. In this paper, we propose a frequency assignment method using net filter discrimination (NFD) and graph coloring to avoid frequency interferences. The proposed method presents frequency assignment problem of tactical communications network as vertex graph coloring problem of a weighted graph. And it makes frequency assignment sequences and assigns center frequencies to communication links according to the priority of communication links and graph coloring. The evaluation shows that this method can assign center frequencies to backbone communication links without frequency interferences. It also shows that the method can improve the frequency utilization in comparison with HTZ-warfare that is currently used by Korean Army.

Decision Support System fur Arrival/Departure of Ships in Port by using Enhanced Genetic Programming (개선된 유전적 프로그래밍 기법을 이용한 선박 입출항 의사결정 지원 시스템)

  • Lee, K. H.;Rhee, W.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.383-389
    • /
    • 2001
  • 된 연구에서 대상으로 하고 있는 LG 정유 광양항 제품부두는 7 선석(Berth)에 재화중량(DWT) 300톤에서 48000 톤의 선박까지 다양한 선박이 이용하고 있으며, 해상의 기상상태에 따른 선박 입출향 통제 지침 설정이 어렵고, 현재 사용하고 있는 지침의 근거가 명확하지 않아 현재의 부두 운영이 비효율적이거나 안전성이 결여되어 있다고 할 수 있다. 따라서 이를 개선하기 위한 합리적인 부두운영 제한조건 개발이 절실히 요구되었다. 본 논문에서는 대상 부두의 특성, 대상 선박의 특성, 하중상태, 선박 운항자의 특성 등을 고려하여 해상/기상 상황(바람, 조류 및 파랑)에 따른 부두 입출항 가능 여부를 정량적으로 판단하고, 안전성 향상 방안을 제시할 수 있는 의사결정 시스템을 개발하고 5번, 7번 선석을 대상으로 이를 검증하였다. 여기서는 입출항 여부를 정량적으로 판단하여 결과를 제시하기 위해서 유전적 프로그래밍(Genetic Programming)을 이용한 기계학습 방법을 이용하였으며, GP의 방대한 계산량을 줄이기 위한 가중 선형 연상 기억(Weighted Linear Associative Memory: WLAM) 방법의 도입 및 전역 최적점을 쉽게 찾기 위한 Group of Additive Genetic Programming Trees(GAGPT)를 도입함으로써 학습 성능을 개선하였다.

  • PDF

The research on reducing aeroacoustic noise using by Pneumatic Auxiliary Unit (공압장치를 이용한 공력 소음 저감 연구)

  • CHUNG, kyoungseoun;CHO, hyeongjin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.119-123
    • /
    • 2013
  • We conduct the research for reducing aeroacoustic noise occurred when a vehicle operates in high speed situation without modifying the structural configuration such as deforming A-pillar's side curvature. We introduce PAU (Pneumatic Auxiliary Unit) which is a sort of air duct using intake air through radiator grill. According to our research, we can reduce overall noise levels around the surface of HSM (Hyundai Simplified Model). When a vehicleruns 100km/s, area-weighted acoustic power level (AWAPL) indicates 33dB without PAU. However with PAU, coverall AWAPL is decreased to 29dB which means we can improvesilentness approximately 12% compared to ordinary case. Moreover we conduct similar implementation to steering situation especially about yawing. In varioussituations, -10, 0, 10 degree of yawing, we observe 10% reduction in the upstream region of HSM but little increase in downstream region. It seems that inlet air overlap turbulent kinetic energy to surrounding flow. Even though downstream region's noise is louder than upstream region, overall AWAPL is still lower than conventional condition. We also apply this scheme to the real vehicle situation, then we get reasonable output which can support our research outputs.

  • PDF

Drug Target Protein Prediction using SVM (SVM을 사용한 약물 표적 단백질 예측)

  • Jung, Hwie-Sung;Hyun, Bo-Ra;Jung, Suk-Hoon;Jang, Woo-Hyuk;Han, Dong-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.17-21
    • /
    • 2007
  • Drug discovery is a long process with a low rate of successful new therapeutic discovery regardless of the advances in information technologies. Identification of candidate proteins is an essential step for the drug discovery and it usually requires considerable time and efforts in the drug discovery. The drug discovery is not a logical, but a fortuitous process. Nevertheless, considerable amount of information on drugs are accumulated in UniProt, NCBI, or DrugBank. As a result, it has become possible to try to devise new computational methods classifying drug target candidates extracting the common features of known drug target proteins. In this paper, we devise a method for drug target protein classification by using weighted feature summation and Support Vector Machine. According to our evaluation, the method is revealed to show moderate accuracy $85{\sim}90%$. This indicates that if the devised method is used appropriately, it can contribute in reducing the time and cost of the drug discovery process, particularly in identifying new drug target proteins.

  • PDF

Comparison of Bayesian Methods for Estimating Parameters and Uncertainties of Probability Rainfall Distribution (확률강우분포의 매개변수 및 불확실성 추정을 위한 베이지안 기법의 비교)

  • Seo, Youngmin;Park, Jaeho;Choi, Yunyoung
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.19-35
    • /
    • 2019
  • This study investigates the performance of four Bayesian methods, Random Walk Metropolis (RWM), Hit-And-Run Metropolis (HARM), Adaptive Mixture Metropolis (AMM), and Population Monte Carlo (PMC), for estimating the parameters and uncertainties of probability rainfall distribution, and the results are compared with those of conventional parameter estimation methods; namely, the Method Of Moment (MOM), Maximum Likelihood Method (MLM), and Probability Weighted Method (PWM). As a result, Bayesian methods yield similar or slightly better results in parameter estimations compared with conventional methods. In particular, PMC can reduce parameter uncertainty greatly compared with RWM, HARM, and AMM methods although the Bayesian methods produce similar results in parameter estimations. Overall, the Bayesian methods produce better accuracy for scale parameters compared with the conventional methods and this characteristic improves the accuracy of probability rainfall. Therefore, Bayesian methods can be effective tools for estimating the parameters and uncertainties of probability rainfall distribution in hydrological practices, flood risk assessment, and decision-making support.

Relationship between Firm Efficiency and Stock Price Performance (기업의 운영 효율성과 주식 수익률 성과와의 관계)

  • Lim, Sungmook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.81-90
    • /
    • 2018
  • Modern investment theory has empirically proved that stock returns can be explained by several factors such as market risk, firm size, and book-to-market ratio. Other unknown factors affecting stock returns are also believed to still exist yet to be found. We believe that one of such factors is the operational efficiency of firms in transforming inputs to outputs, considering the fact that operations is a fundamental and primary function of any type of businesses. To support this belief, this study intends to empirically study the relationship between firm efficiency and stock price performance. Firm efficiency is measured using data envelopment analysis (DEA) with inputs and outputs obtained from financial statements. We employ cross-efficiency evaluation to enhance the discrimination power of DEA with a secondary objective function of aggressive formulation. Using the CAPM-based performance regression model, we test the performance of equally weighted portfolios of different sizes selected based upon DEA cross-efficiency scores along with a buy & hold trading strategy. For the empirical test, we collect financial data of domestic firms listed in KOSPI over the period of 2000~2016 from well-known financial databases. As a result, we find that the porfolios with highly efficient firms included outperform the benchmark market portfolio after controlling for the market risk, which indicates that firm efficiency plays a important role in explaining stock returns.

Blind Quality Metric via Measurement of Contrast, Texture, and Colour in Night-Time Scenario

  • Xiao, Shuyan;Tao, Weige;Wang, Yu;Jiang, Ye;Qian, Minqian.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4043-4064
    • /
    • 2021
  • Night-time image quality evaluation is an urgent requirement in visual inspection. The lighting environment of night-time results in low brightness, low contrast, loss of detailed information, and colour dissonance of image, which remains a daunting task of delicately evaluating the image quality at night. A new blind quality assessment metric is presented for realistic night-time scenario through a comprehensive consideration of contrast, texture, and colour in this article. To be specific, image blocks' color-gray-difference (CGD) histogram that represents contrast features is computed at first. Next, texture features that are measured by the mean subtracted contrast normalized (MSCN)-weighted local binary pattern (LBP) histogram are calculated. Then statistical features in Lαβ colour space are detected. Finally, the quality prediction model is conducted by the support vector regression (SVR) based on extracted contrast, texture, and colour features. Experiments conducted on NNID, CCRIQ, LIVE-CH, and CID2013 databases indicate that the proposed metric is superior to the compared BIQA metrics.

Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review

  • Reza Sarkhani Benemaran;Mahzad Esmaeili-Falak
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.507-527
    • /
    • 2023
  • Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.

Multi-objective optimization of submerged floating tunnel route considering structural safety and total travel time

  • Eun Hak Lee;Gyu-Jin Kim
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.323-334
    • /
    • 2023
  • The submerged floating tunnel (SFT) infrastructure has been regarded as an emerging technology that efficiently and safely connects land and islands. The SFT route problem is an essential part of the SFT planning and design phase, with significant impacts on the surrounding environment. This study aims to develop an optimization model considering transportation and structure factors. The SFT routing problem was optimized based on two objective functions, i.e., minimizing total travel time and cumulative strains, using NSGA-II. The proposed model was applied to the section from Mokpo to Jeju Island using road network and wave observation data. As a result of the proposed model, a Pareto optimum curve was obtained, showing a negative correlation between the total travel time and cumulative strain. Based on the inflection points on the Pareto optimum curve, four optimal SFT routes were selected and compared to identify the pros and cons. The travel time savings of the four selected alternatives were estimated to range from 9.9% to 10.5% compared to the non-implemented scenario. In terms of demand, there was a substantial shift in the number of travel and freight trips from airways to railways and roadways. Cumulative strain, calculated based on SFT distance, support structure, and wave energy, was found to be low when the route passed through small islands. The proposed model helps decision-making in the planning and design phases of SFT projects, ultimately contributing to the progress of a safe, efficient, and sustainable SFT infrastructure.

Multi-objective optimization application for a coupled light water small modular reactor-combined heat and power cycle (cogeneration) systems

  • Seong Woo Kang;Man-Sung Yim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1654-1666
    • /
    • 2024
  • The goal of this research is to propose a way to maximize small modular reactor (SMR) utilization to gain better market feasibility in support of carbon neutrality. For that purpose, a comprehensive tool was developed, combining off-design thermohydraulic models, economic objective models (levelized cost of electricity, annual profit), non-economic models (saved CO2), a parameter input sampling method (Latin hypercube sampling, LHS), and a multi-objective evolutionary algorithm (Non-dominated Sorting Algorithm-2, NSGA2 method) for optimizing a SMR-combined heat and power cycle (CHP) system design. Considering multiple objectives, it was shown that NSGA2+LHS method can find better optimal solution sets with similar computational costs compared to a conventional weighted sum (WS) method. Out of multiple multi-objective optimal design configurations for a 105 MWe design generation rating, a chosen reference SMR-CHP system resulted in its levelized cost of electricity (LCOE) below $60/MWh for various heat prices, showing economic competitiveness for energy market conditions similar to South Korea. Examined economic feasibility may vary significantly based on CHP heat prices, and extensive consideration of the regional heat market may be required for SMR-CHP regional optimization. Nonetheless, with reasonable heat market prices (e.g. district heating prices comparable to those in Europe and Korea), SMR can still become highly competitive in the energy market if coupled with a CHP system.