• Title/Summary/Keyword: Weighted Standard Deviation

Search Result 91, Processing Time 0.03 seconds

Modified Weighted Filter by Standard Deviation in S&P Noise Environments (S&P 잡음 환경에서 표준편차를 이용한 변형된 가중치 필터)

  • Baek, Ji-Hyeon;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.474-480
    • /
    • 2020
  • With the advent of the Fourth Industrial Revolution, many new technologies are being utilized. In particular, video signals are used in various fields. However, when transmitting and receiving video signals, salt and pepper noise and additive white Gaussian noise (AWGN) occur for multiple reasons. Failure to remove such noise when performing image processing can cause problems. Generally, filters such as CWMF, MF, and AMF remove noise. However, these filters perform somewhat poorly in the high-density noise domain and cause smoothing, resulting in slightly lower retention of the edge components. In this paper, we propose an algorithm by effectively eliminating salt and pepper noise using a modified weight filter using standard deviation. In order to prove the noise reduction performance of the proposed algorithm, we compared it with the existing algorithm using PSNR and magnified images.

Weighted Filter based on Standard Deviation for Impulse Noise Removal (임펄스 잡음 제거를 위한 표준편차 기반의 가중치 필터)

  • Cheon, Bong-Won;Kim, Woo-Young;Sagong, Byung-Il;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.213-215
    • /
    • 2021
  • With the development of IoT technology, various technologies such as artificial intelligence and automation are being grafted into industrial sites, and accordingly, the importance of data processing is increasing. In particular, a system based on a digital image may cause a malfunction due to noise in the image due to a sensor defect or a communication environment problem. Therefore, research on image processing has been continued as a pre-processing process, and an effective noise reduction technique is required depending on the type of noise and the characteristics of the image. In this paper, we propose a modified spatial weight filter to protect edge components in the impulse noise reduction process. The proposed algorithm divides the filtering mask into four regions and calculates the standard deviation of each region. The final output was filtered by applying a spatial weight to the region with the lowest standard deviation value. Simulation was conducted to evaluate the performance of the proposed algorithm, and it showed superior impulse noise reduction performance compared to the existing method.

  • PDF

Estimations of Measurement System Variability and PTR under Non-normal Measurement Error (비정규 측정오차의 경우 측정시스템 변동과 PTR 추정)

  • Chang, Mu-Seong;Kim, Sang-Boo
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.11a
    • /
    • pp.199-204
    • /
    • 2006
  • ANOVA is widely used for measurement system analysis. It assumes that the measurement error is normally distributed, which may not be seen in some industrial cases. In this study, the estimates of the measurement system variability and PTR (precision-to-tolerance ratio) are obtained by using weighted standard deviation for the case where the measurement error is non-normally distributed. The Standard Bootstrap method is used for estimating confidence intervals of measurement system variability and PTR. The point and confidence interval estimates for the cases with normally distributed measurement error are compared to those with non-normally distributed measurement errors through computer simulation.

  • PDF

Estimations of Measurement System Variability and PTR under Non-normal Measurement Error (비정규 측정오차의 경우 측정시스템 변동과 PTR 추정)

  • Chang, Mu-Seong;Kim, Sang-Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.1
    • /
    • pp.10-19
    • /
    • 2007
  • ANOVA is widely, used for measurement system analysis. It assumes that the measurement error is normally distributed, which nay not be seen in some industrial cases. In this study the estimates of the measurement system variability and PTR (precision-to-tolerance ratio) are obtained by using weighted standard deviation for the case where the measurement error is non-normally distributed. The Standard Bootstrap method is used foy estimating confidence intervals of measurement system variability and PTR. The point and confidence interval estimates for the cases with normally distributed measurement error are compared to those with non-normally distributed measurement errors through computer simulation.

Modeling of GPS measurement noise for estimating smoothed pseudorange and ionospheric delay (평활화 된 의사거리 및 전리층 지연 추정을 위한 GPS 측정치 잡음 모델링)

  • Han, Deok-Hwa;Yoon, Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.602-610
    • /
    • 2012
  • Ionospheric delay error, one of main error sources in GPS signal, varies with signal frequency. Dual-frequency user uses L1, L2 frequency pseudorange to estimate the ionospheric delay, and there are errors caused by pseudorange measurement noise. So, filter is usually used to smooth the measurement. Weighted hatch filter can estimate optimal smoothed pseudorange measurement. But measurement noise model is needed to use this filter. In this paper, measurement noise modeling is conducted for NDGPS reference station. Using noise modeling result, weighted hatch filter estimate smoothed pseudorange measurement and ionospheric delay. Standard deviation of ionospheric dealy error drops to one-twenty fifth of non-filtered result.

Quantitative Analysis of MR Image in Cerebral Infarction Period (뇌경색 시기별 MR영상의 정량적 분석)

  • Park, Byeong-Rae;Ha, Kwang;Kim, Hak-Jin;Lee, Seok-Hong;Jeon, Gye-Rok
    • Journal of radiological science and technology
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In this study, we showed a comparison and analysis making use of DWI(diffusion weighted image) using early diagnosis of cerebral Infarction and with the classified T2 weighted image, FLAIR images signal intensity for brain infarction period. period of cerebral infarction after the condition of a disease by ischemic stroke. To compare 3 types of image, we performed polynomial warping and affined transform for image matching. Using proposed algorithm, calculated signal intensity difference between T2WI, DWI, FLAIR and DWI. The quantification values between hand made and calculated data are almost the same. We quantified the each period and performed pseudo color mapping by comparing signal intensity each other according to previously obtained hand made data, and compared the result of this paper according to obtained quantified data to that of doctors decision. The examined mean and standard deviation for each brain infarction stage are as follows ; the means and standard deviations of signal intensity difference between DWI and T2WI for each period are $197.7{\pm}6.9$ in hyperacute, $110.2{\pm}5.4$ in acute, and $67.8{\pm}7.2$ in subacute. And the means and standard deviations of signal intensity difference between DWI and FLAIR for each period are $199.8{\pm}7.5$ in hyperacute, $115.3{\pm}8.0$ in acute, and $70.9{\pm}5.8$ in subacute. We can quantificate and decide cerebral infarction period objectively. According to this study, DWI is very exact for early diagnosis. We classified the period of infarction occurrence to analyze the region of disease and normal region in DW, T2WI, FLAIR images.

  • PDF

Assessment of Diffusion-Weighted Imaging-FLAIR Mismatch: Comparison between Conventional FLAIR versus Shorter-Repetition-Time FLAIR at 3T

  • Goh, Byeong Ho;Kim, Eung Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Purpose: Fluid-attenuated inversion recovery (FLAIR) imaging can be obtained faster with shorter repletion time (TR), but it gets noisier. We hypothesized that shorter-TR FLAIR obtained at 3 tesla (3T) with a 32-channel coil may be comparable to conventional FLAIR. The aim of this study was to compare the diagnostic value between conventional FLAIR (TR = 9000 ms, FLAIR9000) and shorter-TR FLAIR (TR = 6000 ms, FLAIR6000) at 3T in terms of diffusion-weighted imaging-FLAIR mismatch. Materials and Methods: We recruited 184 patients with acute ischemic stroke (28 patients < 4.5 hours) who had undergone 5-mm diffusion-weighted imaging (DWI) and two successive 5-mm FLAIR images (no gap; in-plane resolution, $0.9{\times}0.9mm$) at 3T with a 32-channel coil. The acquisition times for FLAIR9000 and FLAIR6000 were 108 seconds (generalized autocalibrating partially parallel acquisitions [GRAPPA] = 2) and 60 seconds (GRAPPA = 3), respectively. Two radiologists independently assessed the paired imaging sets (DWI-FLAIR9000 and DWI-FLAIR6000) for the presence of matched hyperintense lesions on each FLAIR imaging. The signal intensity ratios (area of DWI lesion to contralateral normal-appearing region) on both FLAIR imaging sets were compared. Results: DWI-FLAIR9000 mismatch was present in 39 of 184 (21.2%) patients, which was perfectly the same on FLAIR6000. Three of 145 patients (2%) with DWI-matched lesions on FLAIR9000 had discrepancy on FLAIR6000, showing no significant difference (P > 0.05). Interobserver agreement was excellent for both DWI-FLAIR9000 and DWI-FLAIR6000 (k = 0.904 and 0.883, respectively). Between the two FLAIR imaging sets, there was no significant difference of signal intensity ratio (mean, standard deviation; $1.25{\pm}0.20$; $1.24{\pm}0.20$, respectively) (P > 0.05). Conclusion: For the determination of mismatch or match between DWI and FLAIR imaging, there is no significant difference between FLAIR9000 and FLAIR6000 at 3T with a 32-channel coil.

Noise Removal using Gaussian Distribution and Standard Deviation in AWGN Environment (AWGN 환경에서 가우시안 분포와 표준편차를 이용한 잡음 제거)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.675-681
    • /
    • 2019
  • Noise removal is a pre-requisite procedure in image processing, and various methods have been studied depending on the type of noise and the environment of the image. However, for image processing with high-frequency components, conventional additive white Gaussian noise (AWGN) removal techniques are rather lacking in performance because of the blurring phenomenon induced thereby. In this paper, we propose an algorithm to minimize the blurring in AWGN removal processes. The proposed algorithm sets the high-frequency and the low-frequency component filters, respectively, depending on the pixel properties in the mask, consequently calculating the output of each filter with the addition or subtraction of the input image to the reference. The final output image is obtained by adding the weighted data calculated using the standard deviations and the Gaussian distribution with the output of the two filters. The proposed algorithm shows improved AWGN removal performance compared to the existing method, which was verified by simulation.

Real-time estimation of arc stability in GMAW process (GMAW 공정에서 아크 안정성의 실시간 측정)

  • 원윤재;부광석;조형석
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • Arc must be stable during welding first of all other factors for obtaining sound weldment, especially in the automation of welding process. Arc stability is somewhat sophisticated phenomenon which is not clearly defined yet. In consumable electrode welding, the voltage and current variation due to metal transfer enables to assess arc stability. Recently, statistical analyses of the voltage and current waveform factors are performed to assess the degress of arc stability which is assessed and controlled by operator's own experience by now. But, considering the increasing need and the trend of automation of welding process, it is necessary to monitor arc stability in real-time. In this sutdy, the modified stability index composed of two voltage and current wvaeform factors (arc time and short circuit time) reduced from four factors (arc time, short circuit time, average arc current and average short circuit current) in Mita's index by the welding electrical circuit modeling is proposed and verified by experiments to be well estimating arc stability in the static sense. Also, the recursive calculation form estimating present arc stability in the dynamic sense is developed for real-time estimation. The results of applying the recursive index during welding show good estimation of arc stability in real-time. Therefore, the results of this study offers the mean for real-time control arc stability.

  • PDF

National Datum Transformation Parameters of South Korea Using Weighted Parameter Constraints (가중변수법에 의한 국가좌표계 변환요소의 산정)

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.29-39
    • /
    • 1997
  • The need of transformation parameters from local geodetic datums to a geocentric coordinate system is becoming more common, with the increasing application of satellite positioning techniques to LIS/GIS survey with cadastral management. In this paper, the national transformation parameters between the Korean geodetic coordinates which is based on the Bessel 1841 ellipsoid and the WGS84 ellipsoid are determined by the least square methods with weighted parameter constraints. Three-dimensional geocentric coordinates are based on GPS observation at 31 stations in the geodetic network, the datum parameters are computed within a standard deviation of less than 1 meter. In South Korea, the national transformation parameters with Bessel geoid-heights are useful for GPS baseline processing and for middle-scale map/database transformation.

  • PDF