• Title/Summary/Keyword: Weighted K-Means Clustering

Search Result 33, Processing Time 0.021 seconds

Automatic Color Palette Extraction for Paintings Using Color Grouping and Clustering (색상 그룹핑과 클러스터링을 이용한 회화 작품의 자동 팔레트 추출)

  • Lee, Ik-Ki;Lee, Chang-Ha;Park, Jae-Hwa
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.7
    • /
    • pp.340-353
    • /
    • 2008
  • A computational color palette extraction model is introduced to describe paint brush objectively and efficiently. In this model, a color palette is defined as a minimum set of colors in which a painting can be displayed within error allowance and extracted by the two step processing of color grouping and major color extraction. The color grouping controls the resolution of colors adaptively and produces a basic color set of given painting images. The final palette is obtained from the basic color set by applying weighted k-means clustering algorithm. The extracted palettes from several famous painters are displayed in a 3-D color space to show the distinctive palette styles using RGB and CIE LAB color models individually. And the two experiments of painter classification and color transform of photographic image has been done to check the performance of the proposed method. The results shows the possibility that the proposed palette model can be a computational color analysis metric to describe the paint brush, and can be a color transform tool for computer graphics.

Analysis of the Inner Degradation Pattern by Clustering Algorism at Distribution Line (군집화 알고리즘을 이용한 배전선로 내부 열화 패턴 분석)

  • Choi, Woon-Shik;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.58-61
    • /
    • 2016
  • Degradation in power cables used in distribution lines to the material of the wire, manufacturing method, but also the line of the environment, generates a variety of degradation depending upon the type of load. The local wire deterioration weighted wire breakage accident can occur frequently, causing significant proprietary damage can lead to accidents and precious. In this study, the signal detected by the eddy current aim to develop algorithms capable of determining the signals for the top part and at least part of the signal by using a signal processing technique called K-means algorithm.

No-reference Image Quality Assessment With A Gradient-induced Dictionary

  • Li, Leida;Wu, Dong;Wu, Jinjian;Qian, Jiansheng;Chen, Beijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.288-307
    • /
    • 2016
  • Image distortions are typically characterized by degradations of structures. Dictionaries learned from natural images can capture the underlying structures in images, which are important for image quality assessment (IQA). This paper presents a general-purpose no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A dictionary is first constructed based on gradients of natural images using K-means clustering. Then image features are extracted using the dictionary based on Euclidean-norm coding and max-pooling. A distortion classification model and several distortion-specific quality regression models are trained using the support vector machine (SVM) by combining image features with distortion types and subjective scores, respectively. To evaluate the quality of a test image, the distortion classification model is used to determine the probabilities that the image belongs to different kinds of distortions, while the regression models are used to predict the corresponding distortion-specific quality scores. Finally, an overall quality score is computed as the probability-weighted distortion-specific quality scores. The proposed metric can evaluate image quality accurately and efficiently using a small dictionary. The performance of the proposed method is verified on public image quality databases. Experimental results demonstrate that the proposed metric can generate quality scores highly consistent with human perception, and it outperforms the state-of-the-arts.

Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques(I) (고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정(I) -동질성의 지역구분 방법을 중심으로-)

  • 이순혁;박종화;류경식;지호근;전택기;신용희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.57-68
    • /
    • 2001
  • It is matter of common knowledge to give impetus to the water resources development to cope with increasing demand and supply for the water utilization project including agricultural living and industrial water owing to the economic and civilization development in recent years. Regional design rainfall is necessary or the design of the dam reservoir levee and drainage facilities for the development of various kinds of essential waters including agricultural water. For the estimation of the regional design rainfall classification of the climatologically an geographically homogeneous regions should be preceded preferentially This study was mainly conducted to derive the optimal regionalization of the precipitation data which can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Wulreung islands in Korea. A total of 65 rain gauges were used to regional analysis of precipitation. Annual maximum series for the consecutive durations of 1, 3, 6, 12, 24, 36, 48 and 72hr were used for various statistical analysis. Both K-means clustering and mean annual precipitation methods are used to identify homogeneous regions all over the regions. Nine and five homogeneous regions for the precipitation were classified by the K-means clustering and mean annual methods, respectively. Finally, Five homogeneous regions were established by the trial and error method with homogeneity test using statistics of $\chi$$^2$ distribution.

  • PDF

Classification of Daily Precipitation Patterns in South Korea using Mutivariate Statistical Methods

  • Mika, Janos;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1125-1139
    • /
    • 2006
  • The cluster analysis of diurnal precipitation patterns is performed by using daily precipitation of 59 stations in South Korea from 1973 to 1996 in four seasons of each year. Four seasons are shifted forward by 15 days compared to the general ones. Number of clusters are 15 in winter, 16 in spring and autumn, and 26 in summer, respectively. One of the classes is the totally dry day in each season, indicating that precipitation is never observed at any station. This is treated separately in this study. Distribution of the days among the clusters is rather uneven with rather low area-mean precipitation occurring most frequently. These 4 (seasons)$\times$2 (wet and dry days) classes represent more than the half (59 %) of all days of the year. On the other hand, even the smallest seasonal clusters show at least $5\sim9$ members in the 24 years (1973-1996) period of classification. The cluster analysis is directly performed for the major $5\sim8$ non-correlated coefficients of the diurnal precipitation patterns obtained by factor analysis In order to consider the spatial correlation. More specifically, hierarchical clustering based on Euclidean distance and Ward's method of agglomeration is applied. The relative variance explained by the clustering is as high as average (63%) with better capability in spring (66%) and winter (69 %), but lower than average in autumn (60%) and summer (59%). Through applying weighted relative variances, i.e. dividing the squared deviations by the cluster averages, we obtain even better values, i.e 78 % in average, compared to the same index without clustering. This means that the highest variance remains in the clusters with more precipitation. Besides all statistics necessary for the validation of the final classification, 4 cluster centers are mapped for each season to illustrate the range of typical extremities, paired according to their area mean precipitation or negative pattern correlation. Possible alternatives of the performed classification and reasons for their rejection are also discussed with inclusion of a wide spectrum of recommended applications.

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

Design of Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation (얼굴의 대칭성을 이용하여 조명 변화에 강인한 2차원 얼굴 인식 시스템 설계)

  • Kim, Jong-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1104-1113
    • /
    • 2015
  • In this paper, we propose Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation. Preprocessing process is carried out to obtain mirror image which means new image rearranged by using difference between light and shade of right and left face based on a vertical axis of original face image. After image preprocessing, high dimensional image data is transformed to low-dimensional feature data through 2-directional and 2-dimensional Principal Component Analysis (2D)2PCA, which is one of dimensional reduction techniques. Polynomial-based Radial Basis Function Neural Network pattern classifier is used for face recognition. While FCM clustering is applied in the hidden layer, connection weights are defined as a linear polynomial function. In addition, the coefficients of linear function are learned through Weighted Least Square Estimation(WLSE). The Structural as well as parametric factors of the proposed classifier are optimized by using Particle Swarm Optimization(PSO). In the experiment, Yale B data is employed in order to confirm the advantage of the proposed methodology designed in the diverse illumination variation

Regional Frequency Analysis for Rainfall using L-Moment (L-모멘트법에 의한 강우의 지역빈도분석)

  • Koh, Deuk-Koo;Choo, Tai-Ho;Maeng, Seung-Jin;Trivedi, Chanda
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.252-263
    • /
    • 2008
  • This study was conducted to derive the optimal regionalization of the precipitation data which can be classified on the basis of climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. A total of 65 rain gauges were used to regional analysis of precipitation. Annual maximum series for the consecutive durations of 1, 3, 6, 12, 24, 36, 48 and 72hr were used for various statistical analyses. K-means clustering mettled is used to identify homogeneous regions all over the regions. Five homogeneous regions for the precipitation were classified by the K-means clustering. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the generalized extreme value (GEV) distribution among applied distributions. The regional and at-site parameters of the generalized extreme value distribution were estimated by the linear combination of the probability weighted moments, L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

A Study on Recommendation Technique Using Mining and Clustering of Weighted Preference based on FRAT (마이닝과 FRAT기반 가중치 선호도 군집을 이용한 추천 기법에 관한 연구)

  • Park, Wha-Beum;Cho, Young-Sung;Ko, Hyung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.419-428
    • /
    • 2013
  • Real-time accessibility and agility are required in u-commerce under ubiquitous computing environment. Most of the existing recommendation techniques adopt the method of evaluation based on personal profile, which has been identified with difficulties in accurately analyzing the customers' level of interest and tendencies, as well as the problems of cost, consequently leaving customers unsatisfied. Researches have been conducted to improve the accuracy of information such as the level of interest and tendencies of the customers. However, the problem lies not in the preconstructed database, but in generating new and diverse profiles that are used for the evaluation of the existing data. Also it is difficult to use the unique recommendation method with hierarchy of each customer who has various characteristics in the existing recommendation techniques. Accordingly, this dissertation used the implicit method without onerous question and answer to the users based on the data from purchasing, unlike the other evaluation techniques. We applied FRAT technique which can analyze the tendency of the various personalization and the exact customer.

Estimation of Drought Rainfall by Regional Frequency Analysis using L and LH-Moments(I) - On the Method of L-Moments - (L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정(I) - L-모멘트법을 중심으로 -)

  • 이순혁;윤성수;맹승진;류경식;주호길
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.97-109
    • /
    • 2003
  • This study is mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. It is anticipated to suggest optimal design drought rainfall of hydraulic structures for the water requirement and drought frequency of occurrence for the safety of water utilization through this study. Preferentially, this study was conducted to derive the optimal regionalization of the precipitation data that can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. Five homogeneous regions in view of topographical and climatological aspects were accomplished by K-means clustering method. Using the L-moment ratio diagram and Kolmogorov-Smirnov test, generalized extreme value distribution was confirmed as the best fitting one among applied distributions. At-site and regional parameters of the generalized extreme value distribution were estimated by the method of L-moments. Design drought rainfalls using L-moments following the consecutive duration were derived by the at-site and regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design drought rainfall derived by at-site and regional analysis in the observed an simulated data were computed and compared. In has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE. RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design drought rainfall. Consequently, optimal design drought rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.