결정 트리(Decision Tree)는 주어진 데이터의 경향을 학습하는 데 사용되는 대표적인 방식이다. 이것은 주어진 데이터를 구조화하기 위하여 데이터의 속성과 정보의 엔트로피에 기반을 둔 정보획득량을 이용한다. 본 논문에서는 유비쿼터스 환경에서 사용자 프로파일 정보처럼 시간에 따라 그 경향이 변하는 데이터에 유용하게 적용할 수 있는 시간 가중치 엔트로피를 정의한다. 그리고 ID3 알고리즘을 기반으로 새롭게 제안하는 시간 가중치 엔트로피를 이용하는 향상된 ID3 알고리즘을 쓰고 사용자의 경향을 분석한다. 본 논문에서 제안하는 엔트로피를 이용하는 방식은 데이터들의 시간에 관한 영향을 고려해서 기준방식보다 분석결과가 더욱 유리하다. 두 방식의 비교 테스트 결과를 보면 시간 가중치 엔트로피를 이용하는 알고리즘은 기존의 ID3 알고리즘보다 구성된 트리의 구조가 매우 간단하고 유리하다.
본 논문은 화소 단위의 정보가 아닌 분할된 영역들의 정보를 기반으로 유전자 알고리즘을 이용한 텍스트 후보영역 검출방안을 제안한다. 먼저, 영상분할을 수행하기 위해 색상별 화소분류와 비동질적인 군집의 감소를 위한 영역 단위의 재분류 알고리즘을 수행한다. 색상별 화소분류에 이용되는 EWFCM(Entropy-based Weighted Fuzzy C-Means) 알고리즘은 공간정보를 추가한 개선된 FCM 알고리즘으로써, 잡음에 강건한 특징을 가진다. EWFCM 알고리즘에 의해 분류된 화소들의 군집정보를 기반으로 수행되는 영역 단위의 재분류는 화소나 군집 단위의 재분류에 비해 효과적으로 영상에 존재하는 비동질적인 군집들을 감소시킬 수 있다. 그리고 텍스트 후보영역 검출은 분할된 영역들로부터 추출한 방향성 에지 성분에 대한 분산값 및 에너지, 크기, 개수 등의 정보를 기반으로 유전자알고리즘에 의해 수행된다. 이는 화소 단위의 정보를 이용한 방법보다 더 명확한 텍스트 영역정보를 획득할 수 있으며, 향후 자동문자인식에서 좀 더 손쉽게 이용될 수 있다. 실험 결과 제안한 분할방법은 기존 방법이나 화소나 군집 기반의 재분류보다 좋은 결과를 보였으며, 텍스트 후보영역 검출에서도 화소 단위의 정보를 이용한 기존 방법보다 더 좋은 결과를 보여 제안방법의 유효성을 확인하였다.
In this paper, we propose a learning method of multi-layer perceptrons (MLPs) with 8-bit data precision. The suggested method uses the cross-entropy cost function to remove the slope term of error signal in output layer. To decrease the possibility of overflows, we use 16-bit weighted sum results into the 8-bit data with appropriate range. In the forwared propagation, the range for bit-conversion is determined using the saturation property of sigmoid function. In the backwared propagation, the range for bit-conversion is derived using the probability density function of back-propagated signal. In a simulation study to classify hadwritten digits in the CEDAR database, our method shows similar generalization performance to the error back-propagation learning with 16-bit precision.
In this paper, we propose a subband pyramid image coding scheme that uses ECVQ (ntropy Constrained Vector Quantizer). In subband pyramid image coding, each subband can be encoded with a coder matched to the statistics of that particular subband, and available versions of the original image at different resolution are easily obtained. ECVQ, aiming at the minimization of the distortion for a fixed entropy of the quantizer output, is well combined with the subband pyramid image coding which yields high compression ratio and good image quality. The optimum bit allocation to each subbands corresponds to the points where the individual distortion rate curves are of particular slope, weighted to the number of samples in that subband, in designing ECVQ.
Multi-level thresholding은 영상 분할 방법 중 하나로 널리 이용되고 있지만 대부분의 기존 논문들은 응용 분야에 직접적으로 이용되기에는 적합하지 않거나 영상 분할 단계까지 확장되지 않고 있다. 본 논문에서는 영상 분할을 위한 multi-level thresholding 방안으로써 영역 단위의 multi-level thresholding을 제안한다. 먼저, 영상의 색상별 성분에 대해서 EWFCM(Entropy-based Weighted Fuzzy C-Means) 알고리즘을 적용하여 2개의 군집으로 분류한 후 코드 영상을 생성한다. EWFCM 알고리즘은 화소들에 대한 공간 정보를 추가한 개선된 FCM 알고리즘으로 영상 내 존재하는 잡음을 제거한다. 그리고 코드 영상에 존재하는 군집의 수를 감소함으로써 좀 더 나은 영상 분할 결과를 얻을 수 있으며 군집의 감소는 하나의 군집내에 존재하는 영역들과 나머지 군집들간의 유사도를 기반으로 영역을 재분류함으로써 처리된다. 그러나 영상에는 여전히 많은 영역들이 존재하기 때문에 이를 해결하기 위한 하나의 후처리 방안으로써 영역간의 Kullback-Leibler 거리값을 기반으로 Bayesian 알고리즘에 의한 영역 합병을 수행한다. 실험 결과 제안한 영역 기반의 multi-level thresholding은 기존 방법이나 화소나 군집 기반의 multi-level thresholding보다 좋은 분할 결과를 보였으며 Bayesian 알고리즘을 이용한 후처리 방안에 의해 좀 더 나은 결과를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권4호
/
pp.1927-1943
/
2016
Jitterbug is a passive network covert timing channel supplying reliable stealthy transmission. It is also the basic manner of some improved covert timing channels designed for higher undetectability. The existing entropy-based detection scheme based on training sample binning may suffer from model mismatching, which results in detection performance deterioration. In this paper, a new detection method based on the feature of Jitterbug covert channel traffic is proposed. A fixed binning strategy without training samples is used to obtain bins distribution feature. Coefficient of variation (CV) is calculated for several sets of selected bins and the weighted mean is used to calculate the final CV value to distinguish Jitterbug from normal traffic. Furthermore, the timing window parameter of Jitterbug is estimated based on the detected traffic. Experimental results show that the proposed detection method can achieve high detection performance even with interference of network jitter, and the parameter estimation method can provide accurate values after accumulating plenty of detected samples.
이 연구는 국내 연구자의 학술지 논문 발표 자료를 활용하여 학문분야간 학술지 공유도를 산출하고, 이로부터 국내 학문분야의 구조를 나타내는 네트워크를 생성하였다. 생성된 패스파인더 네트워크는 '생물학' 분야를 핵심으로 하는 생명과학 분야가 중앙을 차지하고 있었으며, 인문학과 의약학, 공학에 속한 학문끼리는 학문간 연계가 매우 강하게 나타났다. 가중 네트워크로부터 각 학문분야의 중심성과 학제성을 파악하기 위해서 엔트로피 공식과 가중 네트워크 중심성 척도를 적용한 결과 전역 중심 학문, 지역 중심 학문, 전역 연계 학문, 기타 일반 학문의 네 가지 유형을 식별할 수 있었다. 가중 네트워크를 이진 네트워크로 변환한 패스파인더 네트워크에서는 다수의 약한 링크가 모인 데이트 허브가 드러나지 않았으나, 가중 네트워크에서의 중심성 지수인 삼각매개중심성의 측정 범위를 지역에서부터 전역까지 달리하며 측정한 결과로부터 '인지과학'분야와 같은 학제성이 높은 데이트 허브를 식별할 수 있었다.
군(軍) PC의 99%는 윈도우 운영체제를 사용하고 있어 안전한 국방사이버공간을 유지하기 위해서는 윈도우 기반 악성코드의 탐지 및 대응이 상당히 중요하다. 본 연구에서는 윈도우 PE(Portable Executable) 포맷의 악성코드를 탐지할 수 있는 모델을 제안한다. 탐지모델을 구축함에 있어서는 탐지의 정확도보다는 급증하는 악성코드에 효율적으로 대처하기 위한 탐지모델의 신속한 업데이트에 중점을 두었다. 이에 학습 속도를 향상시키기 위해 복잡한 전처리 과정 없이 최소한의 시퀀스 데이터만으로도 악성코드 탐지가 가능한 Bidirectional LSTM(Long Short Term Memory) 네트워크를 기반으로 탐지모델을 설계하였다. 실험은 EMBER2018 데이터셋을 활용하여 진행하였으며, 3가지의 시퀀스 데이터(Byte-Entropy Histogram, Byte Histogram, String Distribution)로 구성된 특성 집합을 모델에 학습시킨 결과 90.79%의 Accuracy를 달성하였다. 한편, 학습 소요시간은 기존 탐지모델 대비 1/4로 단축되어 급증하는 신종 악성코드에 대응하기 위한 탐지모델의 신속한 업데이트가 가능함을 확인하였다.
Journal of Information Science Theory and Practice
/
제4권1호
/
pp.21-29
/
2016
Given the difference in research performance in various scientific fields, this study aims to weight and valuate current indicators used for evaluation of scientific productions (publications), in order to adjust these indicators in comparison to each other and make possible a more precise evaluation of scientific productions. This is a scientometrics study using documentary, evaluative, and survey techniques. The statistical population consisted of 106 top Iranian researchers, scientists, and scientific and research managers. Then their research résumé information was gathered and analyzed based on research questions. In order to compare values, the data gathered from research production performance of the population was weighted using Shannon entropy method. Also, the weights of each scientific production importance according to expert opinions (extracted from other works) was analyzed and after adjustment the final weight of each scientific production was determined. A pairwise matrix was used in order to determine the ratios. According to the results, in the area of engineering sciences, patents (0.142) in the area of science, international articles (0.074) in the area of humanities and social sciences, books (0.174), and in the area of medical sciences, international articles (0.111) had the highest weight compared to other information formats. By dividing the weights for each type of publication, the value of each scientific production compared to other scientific productions in the same field and productions of other fields was calculated. Validation of the results in the studied population resulted in very high credibility for all investigated indicators in all four fields. By using these values and normalized ratios of publication indicators it is possible to achieve precise and adjusted results, making it possible to feasibly use these results in realistic policy making.
기하학적 특성이 주어진 두 개 이상의 카메라를 사용하거나 한 개의 카메라를 이동시켜가면서 스테레오 영상을 얻을 때에, 카메라 설정 값의 차이, 조명의 변화 등으로 인해 광량의 변화가 발생한다. 하지만 색상 유사도를 기반으로 한 기존의 스테레오 정합 방법들은 정확한 대응점을 추정하지 못한다. 본 논문에서는 광량 변화에 강건하기 위한 방법으로 스테레오 영상에서 픽셀의 밝기 정보와 그라디언트 정보 및 텍스쳐 정보를 국부 기술자로 구성하는 새로운 방법을 제안하고, 엔트로피에 기반한 적응적 가중치를 국부 기술자에 부여하여 광량 변화에도 정확한 대응점을 추정할 수 있도록 한다. 제안하는 방법은 조명의 변화, 노출 시간의 차이로 인해 광량 변화가 발생된 Middlebury의 실험 영상을 통해 실험되었으며, 광량 변화에 강건한 최근의 방법들과 비교하였다. 그 결과, 제안하는 방법은 전체 영역에서의 오정합 비율이 약 5 % 정도로 비교하는 방법들보다 낮게 발생하여 가장 좋은 성능을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.