• Title/Summary/Keyword: Weighted Distance

Search Result 372, Processing Time 0.029 seconds

A Study on Spatial and Temporal Distribution Characteristics of Coastal Water Quality Using GIS (GIS를 이용한 연안수질의 시공간적 분포 특성에 대한 연구)

  • Cho, Hong-Lae;Jeoung, Jong-Chul
    • Spatial Information Research
    • /
    • v.14 no.2 s.37
    • /
    • pp.223-234
    • /
    • 2006
  • In order to examine spatio-temporal characteristics of coastal water quality, we applied GIS spatial analysis to the water quality data collected from observation points located on Korean coastal area during 1997$\sim$2004. The water quality parameters measured included: chlorophyll-a, pH, DO, COD, SS, dissolved inorganic nitrogen, dissolved inorganic phosphorous, salinity, temperature. The water quality data used in this paper was obtained only at selected sites even though they are potentially available at any location in a continuous surface. Thus, it is necessary to estimate the values at unsampled locations so as to analyze spatial distribution patterns of coastal water quality, Owing to this reason, we applied IDW(inverse distance weighted) interpolation method to water quality data and evaluated the usefulness of IDW method. After IDW interfolation method was applied, we divided the Korean coastal area into 46 sections and examined spatio-temporal patterns of each section using GIS visualization technique. As a result of evaluation, we can blow that IDW interpolation and GIS are useful for understanding spatial and temporal distribution characteristics of coastal water quality data which is collected from a wide area far many years.

  • PDF

Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

  • Sawai, Kana;Nomaguchi, Yutaka;Fujita, Kikuo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reducedorder model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini-max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.

Estimation algorithm of ocean surface temperature flow based on Morphological Operation (형태학적 연산에 기반한 해수면 온도 분포 추정 알고리즘)

  • Gu, Eun-Hye;Cho, Woong-Ho;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.253-260
    • /
    • 2012
  • Target detection is very difficult with complex clutters in IRST(Infrared Search and Track) system for a long distance target. Especially sea-clutter and ocean-surface with non-uniform temperature distribution make it difficult to detect incoming targets in images obtained in sea environment. In this paper, we propose a novel method based on morphological method for estimation of ocean surface with non-uniform temperature flow. In order to estimate the exact ocean surface temperature flow, we divided it into upper and lower bound flow. And after estimating it, the final ocean surface temperature flow is derived by a mean value of the estimated results. Also, we apply the multi-weighted technique with a variety of sizes of structure elements to overcome sub-sampling effect by using morphology method. Experimental results for ocean surface images acquired from many different environments are compared with results of existing method to verify the performance of the proposed methods.

Classification of Proximity Relational Using Multiple Fuzzy Alpha Cut(MFAC) (MFAC를 사용한 근접관계의 분류)

  • Ryu, Kyung-Hyun;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.139-144
    • /
    • 2008
  • Generally, real system that is the object of decision-making is very variable and sometimes it lies situations with uncertainty. To solve these problem, it has used statistical methods as significance level, certainty factor, sensitivity analysis and so on. In this paper, we propose a method for fuzzy decision-making based on MFAC(Multiple Fuzzy Alpha Cut) to improve the definiteness of classification results with similarity evaluation. In the proposed method, MFAC is used for extracting multiple a ${\alpha}$-level with proximity degree at proximity relation between relative Hamming distance and max-min method and for minimizing the number of data which are associated with the partition intervals extracted by MFAC. To determine final alternative of decision-making, we compute the weighted value between extracted data by MFAC From the experimental results, we can see the fact that the proposed method is simpler and more definite than classification performance of the conventional methods and determines an alternative efficiently for decision-maker by testing significance of sample data through statistical method.

Cluster Based Fuzzy Model Tree Using Node Information (상호 노드 정보를 이용한 클러스터 기반 퍼지 모델트리)

  • Park, Jin-Il;Lee, Dae-Jong;Kim, Yong-Sam;Cho, Young-Im;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • Cluster based fuzzy model tree has certain drawbacks to decrease performance of testinB data when over-fitting of training data exists. To reduce the sensitivity of performance due to over-fitting problem, we proposed a modified cluster based fuzzy model tree with node information. To construct model tree, cluster centers are calculated by fuzzy clustering method using all input and output attributes in advance. And then, linear models are constructed at internal nodes with fuzzy membership values between centers and input attributes. In the prediction step, membership values are calculated by using fuzzy distance between input attributes and all centers that passing the nodes from root to leaf nodes. Finally, data prediction is performed by the weighted average method with the linear models and fuzzy membership values. To show the effectiveness of the proposed method, we have applied our method to various dataset. Under various experiments, our proposed method shows better performance than conventional cluster based fuzzy model tree.

Datawise Discriminant Analysis For Feature Extraction (자료별 분류분석(DDA)에 의한 특징추출)

  • Park, Myoung-Soo;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.90-95
    • /
    • 2009
  • This paper presents a new feature extraction algorithm which can deal with the problems of linear discriminant analysis, widely used for linear dimensionality reduction. The scatter matrices included in linear discriminant analysis are defined by the distances between each datum and its class mean, and those between class means and mean of whole data. Use of these scatter matrices can cause computational problems and the limitation on the number of features. In addition, these definition assumes that the data distribution is unimodal and normal, for the cases not satisfying this assumption the appropriate features are not achieved. In this paper we define a new scatter matrix which is based on the differently weighted distances between individual data, and presents a feature extraction algorithm using this scatter matrix. With this new method. the mentioned problems of linear discriminant analysis can be avoided, and the features appropriate for discriminating data can be achieved. The performance of this new method is shown by experiments.

Derivation of regional annual mean rainfall erosivity for predicting topsoil erosion in Korea (표토침식량 산정을 위한 지역별 연평균 강우침식인자 유도)

  • Lee, Joon-Hak
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.783-793
    • /
    • 2018
  • The purpose of this study to present updated regional annual mean rainfall erosivity data in the Republic of Korea. In 2012, Ministry of Environment in Korea published the notice about investigation and survey procedure for the amount of topsoil erosion and adopted USLE (Universal Soil Loss Equation) model to predict the amount of national-scale soil erosion in Korea. In the notice, regional rainfall erosivity values for 158 sites, which is essential to apply the USLE, were included, however, these values came from the data made before 1997 and need to be updated. This study collected, classified and combined annual mean rainfall erosivity data from the literature review to analyze the data. We presented that new iso-erodent map, interpolated by IDW (Inverse Distance Weighted) method and extracted updated regional annual mean rainfall erosivity data at 167 regions for 1961~2015. These values will be used as updated rainfall erosivity data to predict the amount of topsoil erosion in Korea.

Effects of the Modifiable Areal Unit Problem (MAUP) on a Spatial Interaction Model (공간 상호작용 모델에 대한 공간단위 수정가능성 문제(MAUP)의 영향)

  • Kim, Kam-Young
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.2
    • /
    • pp.197-211
    • /
    • 2011
  • Due to the complexity of spatial interaction and the necessity of spatial representation and modeling, aggregation of spatial interaction data is indispensible. Given this, the purpose of this paper is to evaluate the effects of modifiable areal unit problem (MAUP) on a spatial interaction model. Four aggregation schemes are utilized at eight different scales: 1) randomly select seeds of district and then allocate basic spatial units to them, 2) minimize the sum of population weighted distance within a district, 3) maximize the proportion of flow within a district, and 4) minimize the proportion of flow within a district. A simple Poisson regression model with origin and destination constraints is utilized. Analysis results demonstrate that spatial characteristics of residuals, parameter values, and goodness-of-fit of the model were influenced by aggregation scale and schemes. Overall, the model responded more sensitively to aggregation scale than aggregation schemes and the scale effect on the model was varied according to aggregation schemes.

Object Tracking Using Particle Filters in Moving Camera (움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적)

  • Ko, Byoung-Chul;Nam, Jae-Yeal;Kwak, Joon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.375-387
    • /
    • 2012
  • This paper proposes a new real-time object tracking algorithm using particle filters with color and texture features in moving CCD camera images. If the user selects an initial object, this region is declared as a target particle and an initial state is modeled. Then, N particles are generated based on random distribution and CS-LBP (Centre Symmetric Local Binary Patterns) for texture model and weighted color distribution is modeled from each particle. For observation likelihoods estimation, Bhattacharyya distance between particles and their feature models are calculated and this observation likelihoods are used for weights of individual particles. After weights estimation, a new particle which has the maximum weight is selected and new particles are re-sampled using the maximum particle. For performance comparison, we tested a few combinations of features and particle filters. The proposed algorithm showed best object tracking performance when we used color and texture model simultaneously for likelihood estimation.

Two Crystal Structures of Ethylene and Acetylene Sorption Complexes of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolite A

  • Jang, Se-Bok;Moon, Sung-Doo;Park, Jong-Yul;Kim, Un-Sik;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.70-74
    • /
    • 1992
  • Two crystal structures of ethylene (a= 12.272(2) ${\AA}$) and acetylene (a = 12.245(2) ${\AA}$) sorption complexes of dehydrated fully $Ca^{2+}$-exchanged zeolite A have been determined by single crystal X-ray diffraction techniques in the cubic space group, Pm3m at $21(1)^{\circ}C$. Their complexes were prepared by dehydration at $360^{\circ}C$ and $2{\times}10^{-6}$ Torr for 2 days, followed by exposure to 200 Torr of ethylene gas and 120 Torr of acetylene gas both at $24^{\circ}C$, respectively. The structures were refined to final R (weighted) indices of 0.062 with 209 reflections and 0.098 with 171 reflections, respectively, for which I > 3${\sigma}$(I). The structures indicate that all six $Ca^{2+}$ ions in the unit cell are associated with 6-oxygen ring of the aluminosilicate framework. Four of these extend somewhat into the large cavity where each is coordinated to three framework oxide ions and an ethylene molecule and/or an acetylene molecule. The carbon to carbon distance in ethylene sorption structure is 1.48(7) ${\AA}$ and that in acetylene sorption structure 1.25(8) ${\AA}$. The distances between $Ca^{2+}$ ion and carbon atom are 2.87(5) ${\AA}$ in ethylene sorption structure and 2.95(7) ${\AA}$ in acetylene sorption structure. These bonds are relatively weak and probably formed by the electrostatic attractions between the bivalent $Ca^{2+}$ ions and the polarizable ${\pi}$-electron density of the ethylene and/or acetylene molecule.