• Title/Summary/Keyword: Weighted Average Concentration

Search Result 80, Processing Time 0.03 seconds

Comparison of Pollutant Load Discharge Characteristics with Chemical Fertilizer and Organic Compost Applications (화학비료와 유기비료 시비후 오염배출 농도 특성 비교)

  • Lyou, Chang-Woun;Shin, Yong-Cheol;Heo, Sung-Gu;Choi, Ye-Hwan;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.490-495
    • /
    • 2005
  • Organic compost has been widely applied to the cropland because it has been thought as Environmentally Sound Agriculture (ESA) in Korea. However, many field researches have been done to investigate water quality impacts of organic compost uses, compared to those from chemical fertilizer applications. It was found that pollutant loads from organic compost applied croplands were higher than those from chemical fertilizer applied areas. However, there might be other unknown factors affecting the results since the experiments were performed at the outside fields. In this study, indoor rainfall experiments using the Norton rainfall simulator systems were done to minimize and exclude errors from unknown sources by controlling soil characteristics, rainfall amount, rainfall intensity, and fertilizer treatments. The amounts of surface runoff and groundwater percolated from 10% and 20% slope plots were measured and water quality samples were collected and analyzed for BOD, COD, and T-P. Flow weighted mean concentration (FWMC) values were computed to assess effects of different fertilizer treatments. It was found that average concentration values of BOD were 5.57 mg/L from chemical fertilizer treated plot and 8.08 mg/L from organic compost treated plots. For 10% slope, FWMC BOD values from organic compost treated plots were higher by 29.9% than those from chemical fertilizer treated plots. For 20% slope, FWMC BOD values from organic plots were higher by 38.8% than those from chemical fertilizer plots. FWMC BOD values for 20% slope plots were higher than those from those for 10% slope plots. The similar trends were found for COD and T-P. In Korea, excessive use of organic compost has caused extremely high levels of organic matter contents at the cropland. Organic compost are usually applied to the cropland to improve soil quality, while chemical fertilizer is applied to help crop growth. Since organic compost is very slow in releasing its nutrients to the soil, farmers usually apply excessive organic compost for immediate effects and maximum crop yields, which has been causing soil and water quality degradations. Therefore, thorough investigations for better nutrient management plans are needed to develop the ESA strategy in Korea.

  • PDF

Study on the Chemical Management - 1. Chemical Characteristics and Occupational Exposure Limits under Occupational Safety and Health Act of Korea (화학물질 관리 연구-1. 산업안전보건법상 관리 화학물질의 특성과 노출기준 비교)

  • Park, Jihoon;Ham, Seunghon;Kim, Sunju;Lee, Kwonseob;Ha, Kwonchul;Park, Donguk;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.45-57
    • /
    • 2015
  • Objectives: This study aims to compare the physicochemical characteristics, toxicological data with Occupational Exposure Limits (OELs) of chemicals under the Occupational Safety and Health Act(OSHA) regulated by the Ministry of Employment and Labor of Korea. Methods: Information on chemicals which have OELs on physicochemical characteristics and toxicological data was collected using Material Safety Data Sheet(MSDS) from Korea Occupational Safety and Health Agency(KOSHA) and the Korea Information System for Chemical Safety Management(KISChem) in 2014. Statistical analyses including correlation and simple regression were performed to compare the OELs with chemical characteristics including molecular weight, boiling point, odor threshold, vapor pressure, vapor density, solubility and octanol-water partition coefficient(OWPC) and toxicological data such as median lethal dose($LD_{50}$) and median lethal concentration($LC_{50}$). Results: A total of 656 chemicals have OELs under OSHA in Korea. The numbers of chemicals which have eight-hour time weighted average(TWA) and short term exposure limits(STEL) are 618 and 190, respectively. TWA was significantly correlated with boiling point and STEL was only correlated with vapor pressure among physicochemical characteristics. Solubility and OWPC between "skin" and "no skin" substances which indicate skin penetration were not significantly different. Both $LD_{50}$ and $LC_{50}$ were correlated with TWA, while the $LC_{50}$ was not with STEL. As health indicators, health rating and Emergency Response Planning Guidelines(ERPG) rating as recommended by the National Fire Protection Association(NFPA) and American Industrial Hygiene Association(AIHA) were associated with OELs and reflect the chemical hazards. Conclusions: We found relationships between OEL and chemical information including physicochemical characteristics and toxicological data. The study has an important meaning for understanding present regulatory OELs.

Use of Nitrogen Dioxide as Exposure Marker of Passive Smiking for Non-smoking Service-workers at Restaurants (음식점 비흡연 종업원의 간접흡연 노출량 지표로써 이산화질소 이용)

  • Won-Ho Yang;Young-Lim Kho;In-Kyu(Paul) Han;Chong-Min Lee;Moon-Shik Zong;Moon-Ho Chung
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • There is increasing evidence suggestion that passive smoking increases the risk of lung cancer and other disease, though the potential health effects of exposure to environmental tobacco smoke (ETS) is a controversial subject. Since smoking in restaurant is prevalent in Korea, the concern on passive smoking exposure of non-smoking service-workers has been requested. ETS exposure of non-smoking service-workers at restaurant was assessed because they hare spent their times in restaurant indoors. The purpose of this study was feasibility of nitrogen dioxide($NO_2$) as exposure marker of ETS. The results of the study were as follows; 1. Average $NO_2$ concentrations in indoor and outdoor t restaurants were 57.1ppb(${\pm}12.4$) and 54.29ppb(${\pm}9.54$), respectively. Comparing office-workers, service-workers at restaurants were exposured highly. 2. The personal $NO_2$ measurement as exposure marker of ETS could cause the exposure error because $NO_2$ can be generated by combustion appliances in indoor. 3. Service-workers spent their most time(86.6%) in indoor. Mean time spent at restaurant indoors and at home was 9.4 hours and 10.9 hours, respectively. 4. Personal $NO_2$ levels correlated with indoor $NO_2$ concentrations of restaurant (r=0.70) and of their home (r=0.52) rather than of outdoor $NO_2$ concentration of restaurant (r=0.35). The cause of personal $NO_2$ exposure of non-smoking service-workers were considered as smoking of guests and combustion appliance indoors. 5. personal $NO_2$ exposures were estimated using Monte-Carlo simulation and time-weighted model. Estimated personal $NO_2$ level was 47.25ppb(${\pm}8.3$).

  • PDF

Analysis of Rainfall Effect on the GIUH Characteristic Velocity (GIUH 특성속도에 대한 강우의 영향 분석)

  • Kim, Kee-Wook;Roh, Jung-Hwan;Jeon, Yong-Woon;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.533-545
    • /
    • 2003
  • This study analyzed several storm events observed in the Seolma-chun basin to derive the characteristic velocity of GIUH (Geomophological Instantaneous Unit Hydrograph) as well as its variability. Especially, this study focused on the variation of characteristic velocity due to the change of rainfall characteristics. The IUH of the Seolma-chun basin was derived using the HEC-1, whose peak discharge and time were then compared with those of the GIUH to derive the characteristic velocities. The characteristics velocities were analyzed by comparing with the GcIUH (Geomorphoclimatic IUH) as well as the characteristics of rainfall. Results are summarized as follows. (1) The characteristic velocity of GIUH was estimated higher with higher variability than the GcIUH, but their trends were found similar (2) Total amount of effective rainfall (or, mean effective rainfall) well explains the characteristic velocity of GIUH. This could be assured by the regression analysis, whose coefficient of determination was estimated about 0.6. (3) The duration and the maximum intensity of rainfall were found not to affect significantly on the characteristic velocity of GIUH. The coefficients of determination were estimated less than 0.3 for all cases considered. (4) For the rainfall events used in this study, the characteristic velocities of GIUH were found to follow the Gaussian distribution with its mean and the standard deviation 0.402 m/s and 0.173 m/s, respectively. Most of the values are within the range of 0.4∼0.5 m/s, and its coefficient of variation was estimated to be 0.43, much less than that of the runoff itself (about 1.0).

Characterization of fine particulate matter during summer at an urban site in Gwangju using chemical, optical, and spectroscopic methods (화학적·광학적·분광학적 방법을 이용한 광주 도심지역 여름철 초미세먼지의 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.91-106
    • /
    • 2021
  • Daily PM2.5 was collected during summer period in 2020 in Gwangju to investigate its chemical and light absorption properties. In addition, real-time light absorption coefficients were observed using a dual-spot 7-wavelength aethalometer. During the study period, SO42- was the most important contributor to PM2.5, accounting for on average 33% (10-64%) of PM2.5. The chemical form of SO42- was appeared to be combination of 70% (NH4)2SO4 and 30% NH4HSO4. Concentration-weighted trajectory (CWT) analysis indicated that SO42- particles were dominated by local pollution, rather than regional transport from China. A combination of aethalometer-based and water-extracted brown carbon (BrC) absorption indicated that light absorption of BrC due to aerosol particles was 1.6 times higher than that due to water-soluble BrC, but the opposite result was found in absorption Ångström exponent (AAE) values. Lower AAE value by aerosol BrC particles was due to the light absorption of aerosol BrC by both water-soluble and insoluble organic aerosols. The BrC light absorption was also influenced by both primary sources (e.g., traffic and biomass burning emissions) and secondary organic aerosol formation. Finally the ATR-FTIR analysis confirmed the presence of NH4+, C-H groups, SO42-, and HSO42-. The presence of HSO42- supports the result of the estimated composition ratio of inorganic sulfate ((NH4)2SO4) and bisulfate (NH4HSO4).

Relationship between Environmental Exposure and Biological Monitoring Values in Workers Exposed to Styrene (스타이렌 폭로 근로자의 환경중 폭로농도와 생물학적 모니터링에 관한 연구)

  • Paik, Jong-Min;Lee, Jong-Yung;Kim, Jung-Man
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.161-170
    • /
    • 1997
  • This is an effort to confirm changes biological monitoring according to changes in levels of exposure to styrene for industrial workers. This study was conducted on 108 workers, including male of 64 and female 44 who were working at factories of FRP, dipping, and coating. An improved passive monitor method(organic vapor monitor; OVM) was employed to determine levels of exposure. The biological monitoring include blood styrene concentration, urinary mandelic acid(MA), and urinary phenylglyoxylic acid(PGA). Biological monitoring were made through the Collection of blood and urine. The mean value of exposure to styrene was 21.0ppm, which is measured by organic vapor monitor, one of improved passive monitors. The highest exposure level was observed among workers in boat factories, laminating procedure workers, processing workers, respectively(p<0.01). For exposure level, 11% of subjects under study showed over 50ppm which is time weighted average(TWA). The correlation coefficient between biological specimens and the exposure level was 0.62 for blood styrene concentration, 0.58 for MA corrected by creatinine, and 0.70 for PGA corrected by creatinine, respectively(p<0.01). The regression analyses found exposure level relative importance in explaining variance in biological monitoring. In additional to that, gender was a significant factor in explaining variance of MA and MA+PGA. Almost half of variance(49%) in blood styrene concentration was explained by predictors, including exposure level, age, gender, duration, and drinking volume during the last week(p<0.01). The very high correlation(higher than 0.95 was found when a comparison was made among three types of corrected methods, including uncorrected specific gravity and creatinine. In conclusion, these findings suggest OVM to represent levels of exposure to styrene for industrial workers. A discussion was made on possible use of specific gravity sample for biological monitoring. Exposure level may be predicted on MA, PGA in urine, which could be applied to represent biological monitoring.

  • PDF

Wet Deposition of Heavy Metals during Farming Season in Taean, Korea (태안지역 강우의 중금속 함량 평가)

  • Jung, Goo-Bok;Kim, Min-Kyeong;Lee, Jong-Sik;Kim, Won-Il;Kim, Gun-Yeob;Ko, Byong-Gu;Kang, Kee-Kyung;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.153-159
    • /
    • 2011
  • BACKGROUND: This experiment was conducted to investigate the distribution and burden characteristics of heavy metal in the rainwater sampled at Taean area, in the middle part of Korea, from April 2002 to October 2003. METHODS AND RESULTS: The relationship between concentration of heavy metal and other chemical properties in the rainwaters was also evaluated. Chemical properties in the rainwater were various differences with raining periods and years. It appeared that a weighted average pH values of rainwater was ranged from 5.0 to 5.1. Heavy metal concentrations in the rainwater were ranked as Pb > Zn > Cu > Ni > As > Cr > Cd. As compared with heavy metal concentrations of rainwater in 2002, Cu, Pb, and Zn were higher than other elements in 2003. There were positive correlation between major ionic components, such as ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, ${SO_4}^{2-}$ and ${NO_3}^-$, and As, Cd, Zn, Cr, and Ni concentrations in rainwater. For heavy metal distribution of rainwater, the order of average enrichment factor was Cd > Pb > As > Cu > Zn > Ni > Cr, and these were relatively higher than the natural components such as Fe, Mg and Ca. The monthly enrichment factor were relatively high, from August to October at Taean. The monthly amount of heavy metal precipitation was high in the rainy season from July to August because of great influence of rainfall. CONCLUSION(s): The results of this study suggest that the heavy metals(Cd, Pb, As, Cu, and Zn) of rainwater is strongly influenced by anthropogenic sources rather than natural sources.

[ $Gd(DTPA)^{2-}$ ]-enhanced, and Quantitative MR Imaging in Articular Cartilage (관절연골의 $Gd(DTPA)^{2-}$-조영증강 및 정량적 자기공명영상에 대한 실험적 연구)

  • Eun Choong-Ki;Lee Yeong-Joon;Park Auh-Whan;Park Yeong-Mi;Bae Jae-Ik;Ryu Ji Hwa;Baik Dae-Il;Jung Soo-Jin;Lee Seon-Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.100-108
    • /
    • 2004
  • Purpose : Early degeneration of articular cartilage is accompanied by a loss of glycosaminoglycan (GAG) and the consequent change of the integrity. The purpose of this study was to biochemically quantify the loss of GAG, and to evaluate the $Gd(DTPA)^{2-}$-enhanced, and T1, T2, rho relaxation map for detection of the early degeneration of cartilage. Materials and Methods : A cartilage-bone block in size of $8mm\;\times\;10mm$ was acquired from the patella in each of three pigs. Quantitative analysis of GAG of cartilage was performed at spectrophotometry by use of dimethylmethylene blue. Each of cartilage blocks was cultured in one of three different media: two different culture media (0.2 mg/ml trypsin solution, 1mM Gd $(DTPA)^{2-}$ mixed trypsin solution) and the control media (phosphate buffered saline (PBS)). The cartilage blocks were cultured for 5 hrs, during which MR images of the blocks were obtained at one hour interval (0 hr, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr). And then, additional culture was done for 24 hrs and 48 hrs. Both T1-weighted image (TR/TE, 450/22 ms), and mixed-echo sequence (TR/TE, 760/21-168ms; 8 echoes) were obtained at all times using field of view 50 mm, slice thickness 2 mm, and matrix $256\times512$. The MRI data were analyzed with pixel-by-pixel comparisons. The cultured cartilage-bone blocks were microscopically observed using hematoxylin & eosin, toluidine blue, alcian blue, and trichrome stains. Results : At quantitation analysis, GAG concentration in the culture solutions was proportional to the culture durations. The T1-signal of the cartilage-bone block cultured in the $Gd(DTPA)^{2-}$ mixed solution was significantly higher ($42\%$ in average, p<0.05) than that of the cartilage-bone block cultured in the trypsin solution alone. The T1, T2, rho relaxation times of cultured tissue were not significantly correlated with culture duration (p>0.05). However the focal increase in T1 relaxation time at superficial and transitional layers of cartilage was seen in $Gd(DTPA)^{2-}$ mixed culture. Toluidine blue and alcian blue stains revealed multiple defects in whole thickness of the cartilage cultured in trypsin media. Conclusion : The quantitative analysis showed gradual loss of GAG proportional to the culture duration. Microimagings of cartilage with $Gd(DTPA)^{2-}$-enhancement, relaxation maps were available by pixel size of $97.9\times195\;{\mu}m$. Loss of GAG over time better demonstrated with $Gd(DTPA)^{2-}$-enhanced images than with T1, T2, rho relaxation maps. Therefore $Gd(DTPA)^{2-}$-enhanced T1-weighted image is superior for detection of early degeneration of cartilage.

  • PDF

Study on the Chemical Management - 2. Comparison of Classification and Health Index of Chemicals Regulated by the Ministry of Environment and the Ministry of the Employment and Labor (화학물질 관리 연구-2. 환경부와 고용노동부의 관리 화학물질의 구분, 노출기준 및 독성 지표 등의 특성 비교)

  • Kim, Sunju;Yoon, Chungsik;Ham, Seunghon;Park, Jihoon;Kim, Songha;Kim, Yuna;Lee, Jieun;Lee, Sangah;Park, Donguk;Lee, Kwonseob;Ha, Kwonchul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.58-71
    • /
    • 2015
  • Objectives: The aims of this study were to investigate the classification system of chemical substances in the Occupational Safety and Health Act(OSHA) and Chemical Substances Control Act(CSCA) and to compare several health indices (i.e., Time Weighted Average (TWA), Lethal Dose ($LD_{50}$), and Lethal Concentration ($LC_{50}$) of chemical substances by categories in each law. Methods: The chemicals regulated by each law were classified by the specific categories provided in the respective law; seven categories for OSHA (chemicals with OELs, chemicals prohibited from manufacturing, etc., chemicals requiring approval, chemicals kept below permissible limits, chemicals requiring workplace monitoring, chemicals requiring special management, and chemicals requiring special heath diagnosis) and five categories from the CSCA(poisonous substances, permitted substances, restricted substances, prohibited substances, and substances requiring preparation for accidents). Information on physicochemical properties, health indices including CMR characteristics, $LD_{50}$ and $LD_{50}$ were searched from the homepages of the Korean Occupational and Safety Agency and the National Institute of Environmental Research, etc. Statistical analysis was conducted for comparison between TWA and health index for each category. Results: The number of chemicals based on CAS numbers was different from the numbers of series of chemicals listed in each law because of repeat listings due to different names (e.g., glycol monoethylether vs. 2-ethoxy ethanol) and grouping of different chemicals under the same serial number(i.e., five different benzidine-related chemicals were categorized under one serial number(06-4-13) as prohibited substances under the CSCA). A total of 722 chemicals and 995 chemicals were listed at the OSHA and its sub-regulations and CSCA and its sub-regulations, respectively. Among these, 36.8% based on OSHA chemicals and 26.7% based on CSCA chemicals were regulated simultaneously through both laws. The correlation coefficients between TWA and $LC_{50}$ and between TWA and $LD_{50}$, were 0.641 and 0.506, respectively. The geometric mean values of TWA calculated by each category in both laws have no tendency according to category. The patterns of cumulative graph for TWA, $LD_{50}$, $LC_{50}$ were similar to the chemicals regulated by OHSA and CCSA, but their median values were lower for CCSA regulated chemicals than OSHA regulated chemicals. The GM of carcinogenic chemicals under the OSHA was significantly lower than non-CMR chemicals($2.21mg/m^3$ vs $5.69mg/m^3$, p=0.006), while there was no significant difference in CSCA chemicals($0.85mg/m^3$ vs $1.04mg/m^3$, p=0.448). $LC_{50}$ showed no significant difference between carcinogens, mutagens, reproductive toxic chemicals and non-CMR chemicals in both laws' regulated chemicals, while there was a difference between carcinogens and non-CMR chemicals in $LD_{50}$ of the CSCA. Conclusions: This study found that there was no specific tendency or significant difference in health indicessuch TWA, $LD_{50}$ and $LC_{50}$ in subcategories of chemicals as classified by the Ministry of Labor and Employment and the Ministry of Environment. Considering the background and the purpose of each law, collaboration for harmonization in chemical categorizing and regulation is necessary.

Prediction of Potential Species Richness of Plants Adaptable to Climate Change in the Korean Peninsula (한반도 기후변화 적응 대상 식물 종풍부도 변화 예측 연구)

  • Shin, Man-Seok;Seo, Changwan;Lee, Myungwoo;Kim, Jin-Yong;Jeon, Ja-Young;Adhikari, Pradeep;Hong, Seung-Bum
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.562-581
    • /
    • 2018
  • This study was designed to predict the changes in species richness of plants under the climate change in South Korea. The target species were selected based on the Plants Adaptable to Climate Change in the Korean Peninsula. Altogether, 89 species including 23 native plants, 30 northern plants, and 36 southern plants. We used the Species Distribution Model to predict the potential habitat of individual species under the climate change. We applied ten single-model algorithms and the pre-evaluation weighted ensemble method. And then, species richness was derived from the results of individual species. Two representative concentration pathways (RCP 4.5 and RCP 8.5) were used to simulate the species richness of plants in 2050 and 2070. The current species richness was predicted to be high in the national parks located in the Baekdudaegan mountain range in Gangwon Province and islands of the South Sea. The future species richness was predicted to be lower in the national park and the Baekdudaegan mountain range in Gangwon Province and to be higher for southern coastal regions. The average value of the current species richness showed that the national park area was higher than the whole area of South Korea. However, predicted species richness were not the difference between the national park area and the whole area of South Korea. The difference between current and future species richness of plants could be the disappearance of a large number of native and northern plants from South Korea. The additional reason could be the expansion of potential habitat of southern plants under climate change. However, if species dispersal to a suitable habitat was not achieved, the species richness will be reduced drastically. The results were different depending on whether species were dispersed or not. This study will be useful for the conservation planning, establishment of the protected area, restoration of biological species and strategies for adaptation of climate change.