• Title/Summary/Keyword: Weight-bearing symmetry

Search Result 11, Processing Time 0.027 seconds

The Test-Retest Reliability and Criterion-Related Validity of a Trunk Stability Robot When Measuring Static Sitting and Standing Symmetry in Stroke Patients (뇌졸중 환자들을 위한 체간 안정화 로봇의 정적인 앉기와 서기 대칭성 평가의 검사-재검사간 신뢰도와 기준 관련 타당도)

  • An, Seung-Heon;Kim, Dong-Hoon;Jang, Young-Min
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.405-414
    • /
    • 2018
  • Purpose: The purpose of this study was to examine test-retest reliability and criterion-related validity of a trunk stability robot when measuring the weight-bearing symmetry static sitting and standing in stroke patients. Methods: For 27 stroke patients, weight-bearing symmetry was assessed twice, 7 days apart. The intraclass correlation coefficient (ICC2,1) and minimal detectable change (MDC) were used to examine the level of agreement between test and retest. The criterion-related validity of weight -bearing symmetry was demonstrated by Spearman correlation of modified Barthel index (MBI), the sit to stand test (STS), the timed up & go Test (TUG), and the function in sitting test (FIST). Results: the test-retest agreements were excellent for the weight-bearing symmetry of static sitting (ICC2,1: 0.90) and standing (ICC2,1: 0.89). It all showed that the acceptable MDC for the weight-bearing symmetry of static sitting and standing was 0.11 and 0.16, respectively (highest possible score<20 %), indicating that the measures had a small and acceptable degree of measurement error. The weight-bearing symmetry of static sitting was significantly correlated with the TUG(r=-0.45) and FIST(r=0.46)(p<0.05); the weight-bearing symmetry of static standing was also significantly correlated with MBI (r=0.65), TUG (r=-0.67), FIST (r=0.61)(p<0.01), and STS (r=-0.47)(p<0.05). Conclusion: The weight-bearing symmetry of static sitting and standing assessed by the trunk stability robot showed highly sufficient test-retest agreement and mild-to-moderate validity. It could also be useful for clinicians and researchers to evaluate balance performance and monitor functional change in stroke patients.

Relationship between Hip Medial Rotation Range of Motion and Weight Distribution in Patients with Low Back Pain

  • Kim, Sang-Kyu;Kim, Won-Bok;Ryu, Young-Uk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.279-284
    • /
    • 2014
  • PURPOSE: This study intended to verify whether there was actual correlation between weight-bearing asymmetry and a limitation in hip joint rotation range in patients with low back pain. METHODS: Thirty five low back pain patients voluntarily participated this study. For each participant, hip joint medial rotation symmetry rate and the weight-bearing symmetry rate were calculated. The correlation between the two variables was investigated. RESULTS: A decrease in the left hip joint medial rotation range of motion (ROM) was observed more often than a reduction in the right hip joint medial rotation ROM. However, similar number between right and left side was observed in ground reaction force more weighted. The coefficient between the passive hip joint medial rotation symmetry rate and the weight loading symmetry ratio was -0.19 (p < 0.05). CONCLUSION: The present study demonstrated a weak correlation between the hip joint medial rotation ROM and the weight distribution of both feet. Such result suggests that careful evaluation by separating each element is needed in treating patients with low back pain. Future research should take into account asymmetric alignment and abnormal movement in different joints of the body as well as asymmetry in the bilateral hip joint rotation and the unilateral weight supporting posture.

The Effect of Shoe Lift of the Paretic Limb on Weight Bearing in Hemiplegics (Shoe Lift가 편마비 환자의 환측 체중부하에 미치는 영향)

  • Yoon Jung-gyu
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.116-127
    • /
    • 2004
  • The purpose of this study was to determine the effect of shoe lift of the affected limb in subjects with hemiplegia. The subjects of this study were 18 post-stroke hemiplegics. For the study, insole of the paretic side was lifted 10 mm higher, and static weight bearing was measured before and after the lift application. For the measurement of carry-over effect of lift, we got data of those three items prior to and 3 weeks after lift application and 3 days after removal of the lift. Static weight bearing was significantly increased both just after and continuous application of lift for 3 weeks than before. According to this study, lift applied to the shoe of the paretic limb was effective in inducing static weight bearing in the paretic limb. This study suggests that symmetry, induced by shoe lift applied to the paretic limb, could help correct abnormal posture that would be caused in standing and prevent development of abnormal muscle tone in subjects with hemiplegia caused by unilateral stroke.

  • PDF

The Effect of Shoe Lift of the Paretic Limb on Gait Patterns in Hemiplegics (환측 신발 높이기가 편마비 환자의 보행 특성에 미치는 영향)

  • Yoon, Jung-Gyu;Park, Jeong-Mee;Kim, Jong-Man
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.83-96
    • /
    • 2002
  • The purpose of this study was to determine the effect of lift to the shoe of the affected limb on gait patterns in subjects with hemiplegia. The subjects of this study were 18 post-stroke hemiplegics. For the study, insole of the paretic side was lifted 10mm higher, and duration of static weight bearing, dynamic weight bearing and stance phase were measured from one cycle of the gait, before and after the lift application. For the measurement of carry-over effect of lift, we got data of those three items prior to and 3 weeks after lift application and 3 days after removal of the lift. Static weight bearing was significantly increased both just after and continuous application of lift for 3 weeks than before. Dynamic weight bearing was significantly decreased in heel contact and footflat phases only when just after application of the lift, without any change after 3 weeks application. In heel-off phase, dynamic weight bearing did not show any significant difference between before and just after application of lift whereas significantly decreased after 3 weeks application. Duration of stance phase was not changed among anytime of application. According to this study, lift applied to the shoe of the peretic limb was effective in inducing static weight bearing in the paretic limb, but did not significantly effect dynamic weight bearing on gait patterns. This study suggests that symmetry, induced by shoe lift applied to the paretic limb, could help correct abnormal posture that would be caused in standing and prevent development of abnormal muscle tone in subjects with hemiplegia caused by unilateral stroke.

  • PDF

Immediate effects of single-leg stance exercise on dynamic balance, weight bearing and gait cycle in stroke patients

  • Jung, Ji-Hye;Ko, Si-Eun;Lee, Seung-Won
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • Objective: This study aimed to identify how various applications of weight bearing on the affected side of hemiplegia patients affect the ability of balance keeping of the affected leg and the gait parameters. Design: Cross-sectional study. Methods: Eighteen patients with hemiplegia participated in this study. There were twelve males and six females. This study investigated the effects of the single-leg stance exercise on dynamic balance, weight bearing, and gait ability compared with four conditions. Dynamic balance and weight bearing were measured using the step test (ST) of the affected side in stroke patients. In addition, gait parameters were measured using the optogait system for analysis of the spatial and temporal parameters of walking in stroke patients. Results: This study investigated the effect of the single leg stance exercise on the paralysis side. The ST showed significant findings for all conditions (p<0.05). Therefore, knee extension and flexion exercise on the affected side single-leg stance (condition 4) significantly improved dynamic balance and weight bearing on the affected side (p<0.05). In the condition of moving the knee joint in a single-leg stance was discovered that the stance phase time significantly increased more than in the condition of supporting the maximal voluntary weight on the affected side (p<0.05). Conclusions: Single-leg stance on the paralysis side with knee flexion and extension increased symmetry in weight bearing during stance phase time. This study suggests that single-leg stance exercises augments improved gait function through sufficient weight bearing in the stance phase of the affected side.

The Effectiveness of Backward Gait Training on the Treadmill in Children With Spastic Diplegic Cerebral Palsy: A Pilot Study (트레드밀에서 뒤로걷기 훈련이 경직성 양하지 뇌성마비 아동의 보행에 미치는 영향: 사전 연구)

  • Kim, Sung-Gyung;Ryu, Young-Uk;Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.81-90
    • /
    • 2012
  • The aim of the current study was to assess the effectiveness of backward gait training on the treadmill in patients with spastic diplegic cerebral palsy (CP). Twelve patients with spastic diplegic CP participated in the study. An 8-week course of backward gait training was administered to the subjects for 3 days per week. Pre-intervention and post-intervention assessments of temporal-spatial gait parameters, the symmetry of the bilateral lower extremity weight bearing, and gross motor function were analyzed using motion analysis system, force plate, and Gross Motor Function Measurement (GMFM). There were significant improvements (p<.05) in the measures of both step length and right stance phase time. Joint kinematics showed increase in right hip abduction in initial contact and terminal swing, right hip external rotation and knee flexion in mid-swing, left ankle dorsiflexion in initial contact and terminal swing (p<.05). The symmetry of the bilateral lower extremity weight bearing and GMFM also significantly increased (p<.05). These findings indicate that backward gait training using a treadmill is beneficial for patients with spastic diplegic CP.

The Effect of Types of Weight-Bearing Surfaces on Muscle Activities of Lower Limbs and Weight Distribution During Semi-Squat Movement of Patients With Hemiplegia (편마비 환자의 반 쪼그려 앉기(semi-squat)동작 시 양하지 지지면의 형태가 하지 근활성도와 체중분포에 미치는 영향)

  • Yang, Yong-Pil;Roh, Jung-Suk
    • Physical Therapy Korea
    • /
    • v.19 no.1
    • /
    • pp.28-36
    • /
    • 2012
  • This study used an unstable platform to change the support surface type and position of both lower limbs in order to determine changes in weight distribution and muscle including the vastus medialis, tibialis anterior, lateral hamstring, and lateral gastrocnemius of both lower limbs were evaluated during knee joint flexing and extending in a semi-squat movement in 32 hemiplegic patients. The support surface conditions applied to the lower limbs were divided into four categories: condition 1 had a stable platform for both lower limbs; condition 2 had an unstable platform for the non-hemiplegic side and a stable platform for the hemiplegic side; condition 3 had a stable platform for the non-hemiplegic side and an unstable platform for the hemiplegic side; and condition 4 had an unstable platform for both sides. The normalized EMG activity levels of muscles and weight bearing ratio of both sides in the four surface conditions were compared using repeated measures ANOVA. A significant increase was found in the weight support distribution for the hemiplegic side in flexing and extending sessions in condition 2 compared to the other conditions (p<.05). A statistically significant decrease in significant decrease in asymmetrical weight bearing in flexing and extending sessions was observed for condition 2 compared to the other conditions (p<.05). A similar significant decrease was found in differences in muscular activity for both lower limbs in condition 2 (p<.05). The muscular activity of the hemiplegic side, based on the support surface for each muscle showed a significantly greater increase in condition 2 (p<.05). An unstable platform for the non-hemiplegic side and a stable platform for the hemiplegic side therefore increased symmetry in terms of the weight support distribution rate and muscle activity of lower limbs in hemiplegic patients. The problem of postural control due to asymmetry in hemiplegic patients should be further studied with the aim of developing continuous effects of functional training based on the type and position of the support surfaces and functional improvement.

The Comparison of Symmetry of Vertical Ground Reaction Force on Pattern of Sit to Stand in the Chronic Stroke Patients (만성뇌졸중 환자의 일어서기 자세에 따른 수직지면반발력의 대칭성의 비교)

  • Shin, Hwa-Kyung;Jung, Jin-Woo;Kim, Youn-Joung
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.253-259
    • /
    • 2013
  • The purpose of this study is to evaluate the influence of posture elements on symmetrical weight bearing during STS (sit-to-stand) in patients with chronic stroke. The subjects were patients diagnosed with stroke: a total of 24 patients (16 males and 8 females) participated in this study. All the participants performed STS tasks(3 foot postures and 2 arm postures). Two force plates (AMTI) were used to measure the peak vertical ground reaction force(Peak Fz) and the symmetrical ratio to peak vertical ground reaction force. The data were analyzed using independent t-test and 2-way repeated analysis of variance. The results of this study were as follows: 1) The peak Fz placed more weight on the paretic leg during STS and 2) The symmetrical ratio to the peak Fz showed a significant difference according to the foot and arm posture (p<.05), and had the highest AYM_GA ($0.87{\pm}0.12$). These results indicate that arm and leg postures during STS in patients with chronic stroke had the highest AYM_GA. We believe that the outcome of this study will be a reference for the prognosis of STS in patients with stroke.

Kinetic gait analysis in a small sized dog with congenital shoulder luxation (소형견의 선천성 어깨관절 탈구에 관한 운동역학적 보행 분석)

  • ShinHo Lee;Chung Hui Kim;Jae-Hyeon Cho
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.2
    • /
    • pp.175-179
    • /
    • 2023
  • This study was conducted to find out the compensation strategy through kinetic gait analysis by comparing dog with congenital luxation of the shoulder joint and normal dog. Ground reaction forces were recorded for all limbs while normal poodle dog and poodle dog with shoulder joint luxation was allowed to walk on an instrumented platform. The dogs were evaluated for maximal vertical force (MVF), body load distribution (BLD), and symmetry index (SI). The MVF was increased in the contralateral forelimb of luxated shoulder joint. The SI was also increased in a dog with dislocated shoulder joints in the forelimbs. For BLD, the maximum load distribution increased centrally, but the total load distribution decreased in the ipsilateral forelimb paw. In contrast, total load distribution was increased in the contralateral forelimb paw. During forelimb lameness, changes in weight-bearing load showed compensatory load redistribution. These biomechanical changes may lead to changes in the musculoskeletal system in a dog with luxated shoulder.