• 제목/요약/키워드: Weight estimation model

검색결과 332건 처리시간 0.033초

유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델 (Simplified Model for the Weight Estimation of Floating Offshore Structure Using the Genetic Programming Method)

  • 엄태섭;노명일;신현경;하솔
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2014
  • In the initial design stage, the technology for estimating and managing the weight of a floating offshore structure, such as a FPSO (Floating, Production, Storage, and Off-loading unit) and an offshore wind turbine, has a close relationship with the basic performance and the price of the structure. In this study, using the genetic programming (GP), being used a lot in the approximate estimating model and etc., the weight estimation model of the floating offshore structure was studied. For this purpose, various data for estimating the weight of the floating offshore structure were collected through the literature survey, and then the genetic programming method for developing the weight estimation model was studied and implemented. Finally, to examine the applicability of the developed model, it was applied to examples of the weight estimation of a FPSO topsides and an offshore wind turbine. As a result, it was shown that the developed model can be applied the weight estimation process of the floating offshore structure at the early design stage.

초대형 컨테이너선의 경하중량 추정을 위한 통계적 방법 연구 (A Study on Statistical Methods for the Light Weight Estimation of Ultra Large Container Ships)

  • 조용진
    • 한국해양공학회지
    • /
    • 제23권3호
    • /
    • pp.14-19
    • /
    • 2009
  • The present study developed a model to estimate the light weight of an ultra-large container ship. The weight estimation model utilized container ship data obtained from shipyards and the subdivided this weight data into appropriate weight groups. Parameters potentially affecting the group weight were selected and expanded based on experience for weight estimation, and a correlation analysis was performed by the SPSS program to determine the key parameters characterizing the group weight. A weight estimation model applying the multi-regression analysis was proposed to assess the weight of an ultra-large container ship at the preliminary design stage, and the results obtained by the suggested method showed good agreement with the shipyard data.

개선된 유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델 연구 (A Study on Weight Estimation Model of Floating Offshore Structures using Enhanced Genetic Programming Method)

  • 엄태섭;노명일;신현경
    • 대한조선학회논문집
    • /
    • 제52권1호
    • /
    • pp.1-7
    • /
    • 2015
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of direct measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model with the genetic programming was suggested for FPSO. The weight estimation model using genetic programming was established by fixing the independent variables based on this data. In addition, the correlation analysis was performed to make up for the weak points of genetic programming; it is apt to induce over-fitting when the number of data is relatively smaller than that of independent variables. That is, by reducing the number of variables through the analysis of the correlation between the independent variables, the increasing effect in the number of weight data can be expected. The reliability of the developed weight estimation model was within 2% of error rate.

컨테이너 크레인 시스템의 하물중량 추정에 관한 연구 (A Study on the Estimation of Cargo Weight for Container Crane System)

  • 김환성;박흥수;김상봉
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 추계학술대회논문집:21세기에 대비한 지능형 통합항만관리
    • /
    • pp.175-180
    • /
    • 1998
  • In container crane system, the variation of cargo weight have effect on the travelling and sway control of load. For precise travelling and/or anti-sway control of crane system, the cargo weight should be measured and considered with control algorithm. But, and added attachment for measuring the cargo weight put restraint upon the control freedom for travelling and anti-sway. In this paper, we propose an estimation method for cargo weight in container crane system by using observation technique. First of all, we model the container crane system as a bilinear system and transform this model into linear system with external disturbance model. Second, we propose a generalized type - disturbance estimation observer and set a disturbance model, where, the cargo weight is related with the sway of load, and the sway is represented as a periodic external disturbance. Lastly, by using simulation we verify that the proposed algorithm of disturbance estimation observer is effective to estimate the cargo weight, and it will be used with anti-sway control algorithm.

  • PDF

비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구 (A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis)

  • 서성호;노명일;신현경
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.

통계적 방법을 이용한 부유식 해양 플랜트의 중량 추정용 간이 모델 연구 (A Study on the Simplified Model for the Weight Estimation of Floating Offshore Plant using the Statistical Method)

  • 서성호;노명일;구남국;신현경
    • 대한조선학회논문집
    • /
    • 제50권6호
    • /
    • pp.373-382
    • /
    • 2013
  • The weight of floating offshore plant, such as an FPSO(Floating, Production, Storage, and Off-loading unit) and an offshore wind turbine, is important for estimating the amount of production material and for determining the production method. Furthermore, the weight is a factor which affects in the building cost and production time of the floating offshore plant. Although the importance of the weight has long been recognized, the weight has been roughly estimated by using the existing design and production data, and designer's experience. To solve this problem, a simplified model for the weight estimation of the floating offshore plant using the statistical method was proposed in this study. To do this, various data for estimating the weight of the floating offshore plant were collected through the literature survey, and then the correlation analysis and the multiple regression analysis were performed to generate the simplified model for the weight estimation. Finally, to examine the applicability of the developed model, it was applied to examples of the weight estimation of an FPSO topsides and an offshore wind turbine. As a result, it was shown that the developed model can be applied the weight estimation process of the floating offshore plant at the early design stage.

FPSO Topsides Pipe Rack 견적 중량 추산 방법 연구 (A Study on Weight Estimation and Calculation of the Pipe Rack Structures for FPSO EPC Projects)

  • 이수호;안현식;김한성;허윤;배재류;김기수;함승호;이성민;노명일
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.362-370
    • /
    • 2016
  • The weight estimation and calculation of FPSO topsides is first performed at the bidding stage of projects. At this time, it is difficult to estimate and calculate accurately the weight because most of items of FPSO are not apparently defined. Especially, in the case of the pipe rack module, its portion of the total weight and the range of weight variation are large due to special features of piping and electric equipment in the module. Thus, it is very important to estimate and calculate accurately its weight in the task of the weight estimation and calculation of FPSO topsides. In this study, the past data for the weight of the pipe rack module were collected and analyzed, the WBS (Work Breakdown Structure) for the pipe rack module was constructed, and primary variables and secondary variables for developing a weight estimation and calculation model were selected. That is, after analyzing the past data, the volume was selected as the primary variable and the regression analysis was performed based on the variable. Then, several secondary variables were selected and incorporated into a weight estimation and calculation model. At this time, the weight per discipline was assumed from ratios of the total weight. Finally, the weight of the pipe rack module was estimated and calculated by using the developed model. As a result, the deviation from the model was better than that (-20 % ~ 60 %) of other studies about the weight estimation and calculation of FPSO topsides. Thus, the validity and applicability of the weight estimation and calculation of the pipe rack could be checked.

Wing weight estimation considering constraints of structural strength and stiffness in aircraft conceptual design

  • Bai, Chen;Mingqiang, Luo;Zhong, Shen;Zhe, Wu;Yiming, Man;Lei, Fang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.383-395
    • /
    • 2014
  • According to the requirement of wing weight estimation and frequent adjustments during aircraft conceptual design, a wing weight estimation method considering the constraints of structural strength and stiffness is proposed to help designers make wing weight estimations rapidly and accurately. This method implements weight predictions on the basis of structure weight optimization with stiffness constraints and strength constraints, which include achievement of wing shape parametric modeling, rapid structure layout, finite element (FE) model automated generation, load calculation, structure analysis, weight optimization, and weight computed based on modeling. A software tool is developed with this wing weight estimation method. This software can realize the whole process of wing weight estimation with the method and the workload of wing weight estimation is reduced because much of the work can be completed by the software. Finally, an example is given to illustrate that this weight estimation method is effective.

항공기 날개의 통계적 중량 예측식 도출 연구 (A Study on Deriving the Statistical Weight Estimation Formula for an Aircraft Wing)

  • 김석범;정한규;황호연
    • 한국항공우주학회지
    • /
    • 제46권1호
    • /
    • pp.32-40
    • /
    • 2018
  • 본 논문에서는 개념설계 단계에서 주로 사용되는 통계적 중량 예측식 도출 방법에 관한 연구를 수행하였으며 Microsoft Excel을 이용해 이를 프로그램화하고 제트 여객기에 적용하여 검증하였다. 기존 중량 예측식들의 변수들을 참고하여 데이터베이스를 구축하였고 이를 사용하여 제트 여객기 날개 중량 예측식을 모델링하였다. 모델의 과적합 문제를 해결하기 위해 K-fold cross validation 방법을 사용하여 모델을 평가하였다.

고속도로 통행차량 통계 분석을 통한 단독차량의 활하중 효과 추정 (Estimation of Live Load Effect of Single Truck Through Probabilistic Analysis of Truck Traffic on Expressway)

  • 윤태용;안상섭;권순민;백인열
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.1-11
    • /
    • 2016
  • PURPOSES : This study estimated the load effect of a single heavy truck to develop a live load model for the design and assessment of bridges located on an expressway with a limited truck entry weight. METHODS : The statistical estimation methods for the live load effect acting on a bridge by a heavy vehicle are reviewed, and applications using the actual measurement data for trucks traveling on an expressway are presented. The weight estimation of a single vehicle and its effect on a bridge are fundamental elements in the construction of a live load model. Two statistical estimation methods for the application of extrapolation in a probabilistic study and an additional estimation method that adopts the extreme value theory are reviewed. RESULTS : The proposed methods are applied to the traffic data measured on an expressway. All of the estimation methods yield similar results using the data measured when the weight limit has been relatively well observed because of the rigid enforcement of the weight regulation. On the other hand, when the estimations are made using overweight traffic data, the resulting values differ with the estimation method. CONCLUSIONS : The estimation methods based on the extreme distribution theory and the modified procedure presented in this paper can yield reasonable values for the maximum weight of a single truck, which can be applied in both the design and evaluation of a bridge on an expressway.