• Title/Summary/Keyword: Weigh-In-Motion(WIM)

Search Result 40, Processing Time 0.028 seconds

Calibration Method of Vehicle Weight Data from Weigh-In-Motion System According to Temperature Effects (온도의 영향에 대한 Weigh-In-Motion 시스템의 차량중량자료 보정기법)

  • Hwan, Eui-Seung;Lee, Sang-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.187-196
    • /
    • 2010
  • The purpose of this study is to develop the calibration method for temperature effects to improve the accuracy of the Weigh-In-Motion(WIM) system for collecting long-term truck weight data. WIM system was installed at a location where the truck traffic volume is high and weight data has been collected from January 2010. In this study, as a calibration measure, the first axle weight of Truck Type 10, the semi tractor-trailer is used based on the fact that the first axle weight is relatively constant, independent of the cargo weight. From this fact, calibration equations are developed from the relationship between the axle weight and the temperature(daily mean, maximum and minimum). Analysis on calibrated weight data shows adequacy of the proposed calibration method. Results of this study can be used to improve the accuracy of the WIM system and to carry out more rational design of pavement and bridge structures.

Experimental Analysis of Weigh-in-Motion Sensor Installed Post-Tensioned Concrete Pavement Behavior (고속축중계가 설치된 포스트텐션 콘크리트 포장의 실험적 거동 분석)

  • Park, Hee-Beom;Bae, Jong-Oh;Kim, Seong-Min;An, Zu-Og
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 2010
  • This research was conducted to analyze the behavior of the post-tensioned concrete pavement (PTCP) system in which weigh-in-motion (WIM) sensors were installed. One lane of PTCP was constructed after removing the existing asphalt pavement. The frictional resistance between the slab and the underlying layer should be small enough for the PTCP slab to properly have prestresses by tensioning. By performing an experimental construction of PTCP, the friction effects and the longitudinal displacements of PTCP under environmental loads were investigated. Based on the knowledge obtained from the experiments, the actual PTCP sections including WIM sensors were constructed and the curling behavior of the system was investigated. As a result, the behavior of the PTCP system was not affected by the existence of WIM sensors, and the appropriate PTCP system when installing WIM sensors in it could be developed.

Characteristics of Heavy Vehicles Using Expressway Networks Based on Weigh-in-motion Data (WIM 데이터를 이용한 고속도로 중차량 특성 분석)

  • Gil, Heungbae;Kang, Sang Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1731-1740
    • /
    • 2013
  • The design life and durability of the bridges are strongly affected by the Gross Vehicle Weight(GVW) of heavyweight trucks. The Weigh-In-Motion(WIM) systems are typically used to collect information on truck total weight and speed. The statistical analysis of the GVW measured using High Speed WIM systems showed that most of heavy vehicles were from Vehicle Type 7, 10, and 12. The analysis was also carried out to determine goodness of fit with theoretical probability distributions. The normal distribution was shown to best describe the overall distribution of GVW. The top 10% of the GVW appeared to best fit by the Weibull 3 probability distribution.

Field Experiment of Post-Tensioned Prestressed Concrete Pavement for Weigh-in-Motion Sensor Installed Section (포스트텐션 콘크리트 포장의 고속축중계 센서 설치구간 적용을 위한 현장실험)

  • Park, Hee-Beom;Kim, Seong-Min;Yun, Dong-Ju;Kim, Dong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.15-16
    • /
    • 2010
  • The field experiments and analyses were performed to apply Post-Tensioned Prestressed Concrete Pavement(PTCP) at the Weigh-in-Motion(WIM) sensor installed sections. The experimental results showed that PTCP could be acceptable for WIM sections because the displacements were negligibly smaller at the cutting location for sensor installation.

  • PDF

A Study on the Development of Overload Detecting Pad for Low Speed WIM System (저속 WIM 시스템용 과적검지 패드 개발에 관한 연구)

  • Lee, Choon-Man;Choi, Young-Ho;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.179-184
    • /
    • 2017
  • Recently, traffic accidents and damage on the highway have increased because of overloaded vehicles. The existing overload-detecting system has a low accuracy rate. An overload-detecting system using a weigh-in-motion (WIM) system has been developed to solve this problem. The WIM system can be used to detect overloaded vehicles by measuring the weight of the vehicles. The WIM system is divided into high-speed and low-speed types. The inaccuracy rate in the low-speed WIM system results mainly from the low response rate of the sensor when the velocity is moving at more than 20 km/h. In this study, a low-speed overload-detecting pad with a hydraulic structure using a WIM system was developed to make the system more accurate. The structural and formal analysis was carried out by using a finite element method (FEM) in order to analyze the structural stability and the extrusion velocity of the system. In addition, a static load test was performed to confirm the linearity and accuracy of the pad.

A Research for Improvement of WIM System by Abnormal Driving Patterns Analysis (비정상 주행패턴 분석을 통한 WIM 시스템 개선 연구)

  • Park, Je-U;Kim, Young-Back;Chung, Kyung-Ho;Ahn, Kwang-Seon
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.59-72
    • /
    • 2010
  • WIM(Weigh-In-Motion) is the system measuring the weight of the vehicle with a high-speed. In the existing WIM system, vehicle weight is measured based on the constant speed and the error ratio has 10%. However, because of measuring the driving pattern, that is abnormal driving pattern which is like the acceleration and down-shift of the drivers, it has the error ratio which is bigger than the real. In order to it reduces the error ratio of WIM system, the improved WIM system needs to find the abnormal driving pattern. In order to reducing the error ratio of these WIM systems, the improved WIM system can find abnormal driving patterns. In this paper, the improved WIM system which analyzes the abnormality driving pattern influencing on the error ratio of WIM system of an existing and minimizes the error span is designed. The improved WIM system has the multi step loop structure of adding the loop sensor to an existing system. In addition, the measure function defined as an intrinsic is improved and the weight measured by the abnormal driving pattern is amended. The analysis of experiment result improved WIM system can know the fact that the error span reduces by 8% less than in the existing the maximum average sampling error 22.98%.

A Study on Determination of WIM Sensor for Implementation of U-Overloaded Vehicle Regulation System (U-중차량 무인과적 단속시스템 구현을 위한 WIM Sensor 산정에 관한 연구)

  • Choi, Hae-Yun;Chang, Jeong-Hee;Jo, Byung-Wan;Yun, Suck-Min;Oh, Yoong-Kok;Lee, Kyu-Wan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.825-830
    • /
    • 2007
  • For the design and maintenance of highways and road structures, the statistical data are needed for the vehicle, especially heavy truck crossing. So far, static weighing has been used but it needs fixed station, crews, and it takes a lot of time. Also truck mix and headway distances cannot be obtained. Weigh-In-Motion system uses the sensor as a weighing scale and collects the axle weights, axle distances, vehicle types and etc. without stopping or slowing down the vehicle. Objectives of the study is make a determination of WIM Sensor for Implementation of U-Overloaded Vehicle Regulation System.

  • PDF

Development of Truck Axle Load Estimation Model Using Weigh-In-Motion Data (WIM 자료를 활용한 화물차량의 축중량 추정 모형 개발에 관한 연구)

  • Oh, Ju Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.511-518
    • /
    • 2011
  • Truck weight data are essential for road infrastructure design, maintenance and management. WIM (Weigh-In-Motion) system provides highway planners, researchers and officials with statistical data. Recently high speed WIM data also uses to support a vehicle weight regulation and enforcement activities. This paper aims at developing axle load estimating models with high speed WIM data collected from national highway. We also suggest a method to estimate axle load using simple regression model for WIM system. The model proposed by this paper, resulted in better axle load estimation in all class of vehicle than conventional model. The developed axle load estimating model will used for on-going or re-calibration procedures to ensure an adequate level of WIM system performance. This model can also be used for missing axle load data imputation in the future.