• Title/Summary/Keyword: Weibull statistical analysis

Search Result 167, Processing Time 0.023 seconds

Analysis of The Partial Discharge Pattern in XLPE Insulator due to Variation of Statistical Distribution (분포통계변화에 따른 XLPE 절연체의 부분방전 패턴해석)

  • Kim, Tag-Yong;Lee, Hyuk-Jin;Cho, Kyung-Soon;Shin, Hyun-Taek;Yeon, Kyu-Ho;Lee, Chung-Ho;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.83-84
    • /
    • 2006
  • In this paper, we examine discharge characteristics of cross-linked polyethylene (since then; XLPE) according to thickness. Voltage was applied to power frequency by step method, and calibration of discharge was set to 50[pC] (slope=8.333). After the voltage was applied, for 10 [sec] (600 [cycle]), occurring discharge and number were detected. Determine of input pattern is difficult because discharge pattern is irregular. Therefore we investigated pattern using the K-means Analysis and Weibull function. Also we investigated variation of centroid and cluster.

  • PDF

Statistical Analysis for Creep Crack Growth Behavior of Modified 9Cr-1Mo Steel (Modified 9Cr-1Mo 강의 크리프 균열성장 거동에 관한 통계적 해석)

  • Jung, Ik-Hee;Kim, Woo-Gon;Yin, Song-Nan;Ryu, Woo-Seog;Kim, Seon-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.283-289
    • /
    • 2009
  • This paper dealt with a statistical analysis for evaluating the creep crack growth rate (CCGR) for Modified 9Cr-1Mo (ASTM Grade 91) steel. The CCGR data was obtained by the creep crack growth (CCG) tests conducted under various applied loads at $600^{\circ}C$. To obtain logically the B and q values used in the CCGR equation, three methods such as the least square fitting method (LSFM), the mean value method (MVM) and the probabilistic distribution method (PDM) were adopted and their CCGR lines were compared, respectively. In addition, a number of random variables were generated by using the Monte Carlo simulation (MCS), and the CCGR lines were predicted probabilistically. It was found that both the B and q coefficients followed a 2-parameter Weibull distribution well. In the case of the ranges of 10-90% for the probability variables, P(B, q), the CCGR lines were predicted. Fractographic study was conducted from the specimen after the CCG tests.

A Study on the Application and Verification of Statistical Techniques for Calculating the Life of Electric Power Facilities (전력설비의 수명계산을 위한 통계적 분석기법의 활용 및 검증에 대한 연구)

  • Lee, Onyou;Kim, Kang-Sik;Lee, Hongseok;Cho, Chongeun;Kim, Sang-Bong;Park, Gi-Hun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Social infrastructure facilities such as production, transportation, gas and electricity facilities may experience poor performance depending on time, load, temperature, etc. and may require maintenance, repair and management as they are used. In particular, in the case of transformers, the process of managing them for the purpose of preventing them from failing is necessary because a failure can cause enormous social damage. The management of transformers should consider both technical and economic aspects and strategic aspects at the same time. Thus, it applies the Asset Management concept, which is widely used in the financial industry as an advanced method of transformer management techniques worldwide. In this paper, the operation and power outage data were secured for the asset management of the transformer for distribution, and the asset status was analyzed. Analysis of asset status using actual operation and power outage data is essential for assessing the statistical life and failure rate of the facility. Through this paper, the status of transformer assets for arbitrary A group distribution was analyzed, and the end of life and replacement life were calculated.

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

PWF-GPH method for the statistical analysis of failure time data (고장시간 자료의 통계적 분석을 위한 PWF-GPH 방법)

  • 김선영;윤복식
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.1
    • /
    • pp.114-128
    • /
    • 1996
  • In this paper, a life distribution fitting method based on generalized phase-type distributions(GPH) is presented. By fitting the life distribution to a GPH, we can utilize various useful properties of the GPH. Two different approaches are used according to the properties of the given failure time data. One is an approximation to a GPH through the piecewise Weibull failure rate(PWF) model and the other is a direct approximation to a GPH using the empirical distribution function. Two numerical examples are also presented. In the first example, both of the two approaches are utilized and compared for an incomplete data set. And in the second example, the direct approximation method from an empirical distribution is utilized for the analysis of a complete data set. In both cases, we could confirm the validity of the proposed method.

  • PDF

A study on the analysis of the failure probability based on the concept of loss probability (결손확률모델에 의한 파손확률 해석에 관한 연구)

  • 신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2037-2047
    • /
    • 1991
  • Strength is not simply a single given value but rather is a statistical one with certain distribution functions. This is because it is affected by many unknown factors such as size, shape, stress distribution, and combined stresses. In this study, a model of loss probability is proposed in view of the fact that one of the fundamental configuration of nature is hexagonal, for example, the shapes of lattice unit, grain, and so on. The model sues the concept of loss of certain element in place of Jayatilaka-Trustrum's length and angle of cracks. Using this model, the loss probability due to each loss of certain elements is obtained. Then, the maximum principal stress is calculated by the finite element method at the centroid of the elements under the tensile load for the 4,095 models of analysis. Finally, the failure probability of the brittle materials is obtained by multiplying the loss probability by the ratio of the maximum principal stress to theoretical tensile strength. Comparison of the result of the Jayatilaka-Trustrum's model and the proposed model shows that the failure probabilities by the two methods are in good agreement. Further, it is shown that the parametric relationship of semi-crack lengths for various degrees of birittleness can be determined. Therefore, the analysis of the failure probability suing the proposed model is shown to be promising as a new method for the study of the failure probability of birttle materials.

Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test (통계적 가설검정을 이용한 중심형 버터플라이 밸브의 신뢰성 평가)

  • Chang, Mu-Seong;Choi, Jong-Sik;Choi, Byung-Oh;Kim, Do-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1305-1311
    • /
    • 2015
  • A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and $B_{10}$ life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles.

Evaluation of the Fracture Toughness Transition Characteristics of RPV Steels Based on the ASTM Master Curve Method Using Small Specimens (소형시험편의 Master Curve 방법을 이용한 원자로 압력용기강의 파괴인성 천이특성평가)

  • Yang, Won-Jon;Heo, Mu-Yeong;Kim, Ju-Hak;Lee, Bong-Sang;Hong, Jun-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.303-310
    • /
    • 2000
  • Fracture toughness of five different reactor pressure vessel steels was characterized in the transition temperature region by the ASTM E1921-97 standard method using Charpy-sized small specimens. T he predominant fracture mode of the tested steels was transgranular cleavage in the test conditions. A statistical analysis based on the Weibull distribution was applied to the interpretation of the scattered fracture toughness data. The size-dependence of the measured fracture toughness values was also well predicted by means of the Weibull probabilistic analysis. The measured fracture toughness transition curves followed the temperature-dependence of the ASTM master curve within the expected scatter bands. Therefore, the fracture toughness characteristics in the transition region could be described by a single parameter, so-called the reference temperature (T。), for a given steel. The determined reference temperatures of the tested materials could not be correlated with the conventional index temperatures from Charpy impact tests.

Delamination behaviors of GdBCO CC tapes under different transverse loading conditions

  • Gorospe, Alking B.;Bautista, Zhierwinjay M.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.13-17
    • /
    • 2015
  • In superconducting coil applications particularly in wet wound coils, coated conductor (CC) tapes are subjected to different type of stresses. These include hoop stress acting along the length of the CC tape and the Lorentz force acting perpendicular to the CC tape's surface. Since the latter is commonly associated with delamination problem of multi-layered CC tapes, more understanding and attention on the delamination phenomena induced in the case of coil applications are needed. Difference on the coefficient of thermal expansion (CTE) of each constituent layer of the CC tape, the bobbin, and the impregnating materials is the main causes of delamination in CC tapes when subjected to thermal cycling. The CC tape might also experience cyclic loading due to the energizing scheme (on - off) during operation. In the design of degradation-free superconducting coils, therefore, characterization of the delamination behaviors including mechanism and strength in REBCO CC tapes becomes critical. In this study, transverse tensile tests were conducted under different loading conditions using different size of upper anvils on the GdBCO CC tapes. The mechanical and electromechanical delamination strength behaviors of the CC tapes under transverse tensile loading were examined and a two-parameter Weibull distribution analysis was conducted in statistical aspects. As a result, the CC tape showed similar range of mechanical delamination strength regardless of cross-head speed adopted. On the other hand, cyclic loading might have affected the CC tape in both upper anvil sizes adopted.

An Improved Monte-Carlo Simulation Method for Typhoon Risk Assessment in Korea (개선(改善)된 Monte-Carlo 시뮬레이션 방법(方法)에 의한 한국(韓國)의 태풍위험도(颱風危險度) 분석(分析))

  • Cho, Hyo Nam;Chang, Dong Il;Cha, Cheol Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.159-165
    • /
    • 1987
  • This study proposes an operational method of typhoon risk assessments in Korea, using Statistical analysis and probabilistic description of typhoon at a site. Two alternative simulation and fitting methods are discussed to predict the probabilistic typhoon wind speeds by indirect methods. A Commonly used indirect method is Russell's procedure, which generates about 1,000 Simulation data for typhoon winds, statistically evaluate the base-line distribution, and then fits the results to the Weibull distribution based on probabilistic description of climatological Characteristics and Wind field model of typhoon at a site. However, an alternative procedure proposed in this Paper simulates extreme typhoon wind data of about 150~200 years and directly fits the generated data to the Weibull distribution. The computational results show that the proposed simulation method is more economical and reasonable for typhoon risk-assessment based on the indirect method. And using the proposed indirect method, the probabilistic design wind speed for transmission towers in typhoon-prone region along the South-Western coast is investigated.

  • PDF