• Title/Summary/Keyword: Weibull Failure Model

Search Result 168, Processing Time 0.023 seconds

A Reliability Model of Process Systems with Multiple Dependent Failure States (다중 종속 고장상태를 갖는 공정시스템의 신뢰성 모델)

  • Choi, Soo Hyoung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.37-41
    • /
    • 2018
  • Process safety technology has developed from qualitative methods such as HAZOP (hazard and operability study) to semi-quantitative methods such as LOPA (layer of protection analysis), and quantitative methods are actively studied these days. Quantitative risk assessment (QRA) is often based on fault tree analysis (FTA). FTA is efficient, but difficult to apply when failure events are not independent of each other. This problem can be avoided using a Markov process (MP). MP requires definition of all possible states, and thus, generally, is more complicated than FTA. A method is proposed in this work that uses an MP model and a Weibull distribution model in order to construct a reliability model for multiple dependent failures. As a case study, a pressure safety valve (PSV) is considered, for which there are three kinds of failure, i.e. open failure, close failure, and gas tight failure. According to recently reported inspection results, open failure and close failure are dependent on each other. A reliability model for a PSV group is proposed in this work that is to reproduce these results. It is expected that the application of the proposed method can be expanded to QRA of various systems that have partially dependent multiple failure states.

Optimizing Concurrent Spare Parts Inventory Levels for Warships Under Dynamic Conditions

  • Moon, Seongmin;Lee, Jinho
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2017
  • The inventory level of concurrent spare parts (CSP) has a significant impact on the availability of a weapon system. A failure rate function might be of particular importance in deciding the CSP inventory level. We developed a CSP optimization model which provides a compromise between purchase costs and shortage costs on the basis of the Weibull and the exponential failure rate functions, assuming that a failure occurs according to the (non-) homogeneous Poisson process. Computational experiments using the data obtained from the Korean Navy identified that, throughout the initial provisioning period, the optimization model using the exponential failure rate tended to overestimate the optimal CSP level, leading to higher purchase costs than the one using the Weibull failure rate. A Pareto optimality was conducted to find an optimal combination of these two failure rate functions as input parameters to the model, and this provides a practical solution for logistics managers.

Failure Probability Models of Concrete Subjected to Split Tension Repeated- Loads (쪼갬인장 반복하중을 받는 콘크리트의 파괴확률 모델)

  • 김동호;김경진;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.311-314
    • /
    • 2003
  • Concrete structures such as bridge, pavement, airfield, and offshore structure are normally subjected to repeated load. This paper proposes a failure probability models of concrete subjected to split tension repeated-loads, based on experimental results. The fatigue tests were performed at the stress ratio of 0.1, the loading shape of sine, the frequency of 20Hz, and the stress levels of 90, 80 and 70%. The fatigue test specimen was 150mm in diameter and 75mm in thickness. The fatigue analysis did not include which exceeded 0.9 of statistical coefficient of determination values or did not failure at 2$\times$$10^6$ cycles. The graphical method, the moment method, and maximum likelihood estimation method were used to obtain Weibull distribution parameters. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable 5% level of significance. As a result, the proposed failure probability model based on the two-parameter($\alpha and \mu$) Weibull distribution was good enough to estimate accurately the fatigue life subjected to tension mode.

  • PDF

On the New Age Replacement Policy (새로운 연령교체 방식의 개발)

  • Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.280-286
    • /
    • 2016
  • Purpose: Recently, Jiang defines the tradeoff B life to minimize a sum of life lost by preventive maintenance (PM) and corrective maintenance (CM) contribution parts and sets up an optimal replacement age of age replacement policy as this tradeoff life. In this paper, Jiang's model only considering the known lifetime distribution is extended by assigning different weights to two parts of PM and CM in order to reflect the practical maintenance situations in application. Methods: The new age replacement model is formulated and the meaning of a weight factor is expressed with the implied cost of failure under asymptotic expected cost model and also discussed with one-cycle expected cost criterion. Results: The proposed model is applied to Weibull and lognormal lifetime distributions and optimum PM replacement ages are derived with corresponding implied cost of failure. Conclusion: The new age replacement policy to escape the estimation of cost of failure in classical asymptotic expected cost criterion based on the renewal process is provided.

An Adaptive Failure Rate Change-Point Model for Software Reliability

  • Jeong, Kwang-Mo
    • International Journal of Reliability and Applications
    • /
    • v.2 no.3
    • /
    • pp.199-207
    • /
    • 2001
  • The failure rate functions between successive failures are of concatenated form. We allow the parameters of failure rate function change after a certain failure and its fixing. We confine out attention to a model wherein the interfailure times are described by its failure rate function. We suggest an adaptive failure rate function with a change-point under the assumption that interfailure times are record value statistics from a Weibull distribution. The proposed model will be applied through a practical example of software failure data.

  • PDF

The Bivariate Kumaraswamy Weibull regression model: a complete classical and Bayesian analysis

  • Fachini-Gomes, Juliana B.;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.523-544
    • /
    • 2018
  • Bivariate distributions play a fundamental role in survival and reliability studies. We consider a regression model for bivariate survival times under right-censored based on the bivariate Kumaraswamy Weibull (Cordeiro et al., Journal of the Franklin Institute, 347, 1399-1429, 2010) distribution to model the dependence of bivariate survival data. We describe some structural properties of the marginal distributions. The method of maximum likelihood and a Bayesian procedure are adopted to estimate the model parameters. We use diagnostic measures based on the local influence and Bayesian case influence diagnostics to detect influential observations in the new model. We also show that the estimates in the bivariate Kumaraswamy Weibull regression model are robust to deal with the presence of outliers in the data. In addition, we use some measures of goodness-of-fit to evaluate the bivariate Kumaraswamy Weibull regression model. The methodology is illustrated by means of a real lifetime data set for kidney patients.

A Study on A, pp.ication of Reliability Prediction & Demonstration Methods for Computer Monitor (Computer용 Monitor에 대한 신뢰성 예측.확인 방법의 응용)

  • 박종만;정수일;김재주
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.3
    • /
    • pp.96-107
    • /
    • 1997
  • The recent stream to reliability prediction is that it is totally inclusive in depth to consider even the operating and environmental condition at the level of finished goods as well as component itselves. In this study, firstly we present the reliability prediction methods by entire failure rate model which failure rate at the system level is added to the failure rate model at the component level. Secondly we build up the improved bases of reliability demonstration through a, pp.ication of Kaplan-Meier, Cumulative hazard, Johnson's methods as non-parametric and Maximum Likelihood Estimator under exponential & Weibull distribution as parametric. And also present the methods of curve fitting to piecewise failure rate under Weibull distribution, PRST (Probability Ratio Sequential Test), curve fitting to S-shaped reliability growth curve, computer programs of each methods. Lastly we show the practical for determination of optimal burn-in time as a method of reliability enhancement, and also verify the practical usefulness of the above study through the a, pp.ication of failure and test data during 1 year.

  • PDF

A Study on Attribute Analysis of Software Development Cost Model about Life Distribution Considering Shape Parameter of Weibull Distribution (수명분포가 와이블 분포의 형상모수를 고려한 소프트웨어 개발 비용모형에 관한 속성분석 연구)

  • Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.645-650
    • /
    • 2018
  • Software stability is the possibility of operating without any malfunction in the operating environment over time. In a finite failure NHPP for software failure analysis, the failure occurrence rate may be constant, monotonically increasing, or monotonically decreasing. In this study, based on the NHPP model and based on the software failure time data, we compared and analyzed the attributes of the software development cost model using the exponential distribution Rayleigh distribution and inverse exponential distribution considering the shape parameter of the Weibull distribution as the life distribution. The results of this study show that the Rayleigh model is the fastest release time and has the economic cost compared to the inverse-exponential model and the Goel-Okumoto model. Using the results of this study, it can be expected that software developers and operators will be able to predict the optimal release time and economic development cost.

A Study on Reliability Data Analysis for Components of Machining Center (공작기계 부품의 신뢰성 데이터 해석에 관한 연구)

  • 이수훈;김종수;송준엽;이승우;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.88-91
    • /
    • 2001
  • The reliability data analysis for components of CNC machining center is studied in this paper. The failure data of mechanical part is analyzed by Exponetial, Weibull, and Log-normal distributions. And then, the optimum failure distribution model is selected by goodness of fit test. The reliability data analysis program is developed using ASP language. The failure rate, MTBF, life, and failure mode of mechanical parts are estimated and searched by this program. The failure data and analysis results are stored in the database.

  • PDF

A Discrete Time Approximation Method using Bayesian Inference of Parameters of Weibull Distribution and Acceleration Parameters with Time-Varying Stresses (시변환 스트레스 조건에서의 와이블 분포의 모수 및 가속 모수에 대한 베이시안 추정을 사용하는 이산 시간 접근 방법)

  • Chung, In-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1331-1336
    • /
    • 2008
  • This paper suggests a method using Bayesian inference to estimate the parameters of Weibull distribution and acceleration parameters under the condition that the stresses are time-dependent functions. A Bayesian model based on the discrete time approximation is formulated to infer the parameters of interest from the failure data of the virtual tests and a statistical analysis is considered to decide the most probable mean values of the parameters for reasoning of the failure data.

  • PDF