• Title/Summary/Keyword: Weibull Distribution Function

Search Result 262, Processing Time 0.024 seconds

Color Image Segmentation by statistical approach (확률적 방법을 통한 컬러 영상 분할)

  • Gang Seon-Do;Yu Heon-U;Jang Dong-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1677-1683
    • /
    • 2006
  • Color image segmentation is useful for fast retrieval in large image database. For that purpose, new image segmentation technique based on the probability of pixel distribution in the image is proposed. Color image is first divided into R, G, and B channel images. Then, pixel distribution from each of channel image is extracted to select to which it is similar among the well known probabilistic distribution function-Weibull, Exponential, Beta, Gamma, Normal, and Uniform. We use sum of least square error to measure of the quality how well an image is fitted to distribution. That P.d.f has minimum score in relation to sum of square error is chosen. Next, each image is quantized into 4 gray levels by applying thresholds to the c.d.f of the selected distribution of each channel. Finally, three quantized images are combined into one color image to obtain final segmentation result. To show the validity of the proposed method, experiments on some images are performed.

  • PDF

Performance Comparison of Cumulative Incidence Estimators in the Presence of Competing Risks (경쟁위험 하에서의 누적발생함수 추정량 성능 비교)

  • Kim, Dong-Uk;Ahn, Chi-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.357-371
    • /
    • 2007
  • For the time-to-failure data with competing risks, cumulative incidence functions (CIFs) are commonly estimated using nonparametric methods. If the cases of events due to the cause of primary interest are infrequent relative to other cause of failure, nonparametric methods may result in rather imprecise estimates for CIF. In such cases, Bryant et al. (2004) suggested to model the cause-specific hazard of primary interest parametrically, while accounting for the other modes of failure using nonparametric estimator. We represented the semiparametric cumulative incidence estimator and extended to the model of Weibull and log-normal distribution. We also conducted simulations to access the performance of the semiparametric cumulative incidence estimators and to investigate the impact of model misspecification in log-normal cause-specific hazard model.

Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge

  • Ye, X.W.;Su, Y.H.;Xi, P.S.;Chen, B.;Han, J.P.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1087-1105
    • /
    • 2016
  • Traffic load and volume is one of the most important physical quantities for bridge safety evaluation and maintenance strategies formulation. This paper aims to conduct the statistical analysis of traffic volume information and the multimodal modeling of gross vehicle weight (GVW) based on the monitoring data obtained from the weigh-in-motion (WIM) system instrumented on the arch Jiubao Bridge located in Hangzhou, China. A genetic algorithm (GA)-based mixture parameter estimation approach is developed for derivation of the unknown mixture parameters in mixed distribution models. The statistical analysis of one-year WIM data is firstly performed according to the vehicle type, single axle weight, and GVW. The probability density function (PDF) and cumulative distribution function (CDF) of the GVW data of selected vehicle types are then formulated by use of three kinds of finite mixed distributions (normal, lognormal and Weibull). The mixture parameters are determined by use of the proposed GA-based method. The results indicate that the stochastic properties of the GVW data acquired from the field-instrumented WIM sensors are effectively characterized by the method of finite mixture distributions in conjunction with the proposed GA-based mixture parameter identification algorithm. Moreover, it is revealed that the Weibull mixture distribution is relatively superior in modeling of the WIM data on the basis of the calculated Akaike's information criterion (AIC) values.

Estimation Model and Vertical Distribution of Leaf Biomass in Pinus sylvestris var. mongolica Plantations

  • Liu, Zhaogang;Jin, Guangze;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.576-583
    • /
    • 2009
  • Based on the stem analysis and biomass measurement of 36 trees and 1,576 branches in Pinus sylvestris var. mongolica (Mongolian pine) plantations of Northeast China, this study was conducted to develop estimation model equation for leaf biomass of a single tree and branch, to examine the vertical distribution of leaf biomass in the crown, and to evaluate the proportional ratios of biomass by tree parts, stem, branch, and leaf. The results indicated that DBH and crown length were quite appropriate to estimate leaf biomass. The biomass of single branch was highly correlated with branch collar diameter and relative height of branch in the crown, but not much with stand density, site quality, and tree height. Weibull distribution function would have been appropriate to express vertical distribution of leaf biomass. The shape parameters from 29 sample trees out of 36 were less than 3.6, indicating that vertical distribution of leaf biomass in the crown was displayed by bell-shaped curve, a little inclined toward positive side. Apparent correlationship was obtained between leaf biomass and branch biomass having resulted in linear function equation. The stem biomass occupied around 80% and branch and leaf made up about 20% of total biomass in a single tree. As the level of tree class was increased from class I to class V, the proportion of the stem biomass to total biomass was gradually increased, but that of branch and leaf became decreased.

A Study on the Reliability Analysis for the High Precision Pneumatic Actuator within Tape Feeder (테이프 피더 내장 공압 액추에이터에 대한 신뢰성 평가에 관한 연구)

  • Choi Jin-Hwa;Jeon Byung-Cheol;Cho Myeong-Woo;Kang Sung-Min;Lee Soo-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.63-68
    • /
    • 2006
  • This research presents the reliability analysis of the pneumatic actuator within the tape feeder that is used to transfer the correct force to linked parts during l.0E+7 cycles. First, the degradation analysis for thrust and air leakage is executed to obtain the failure data of a product based on its performance over time. Second, once the parameters has been calculated using the weibull 2-parameter distribution and MLE(Maximum Likelihood Estimation), information related to life such as reliability, failure rate, probability density function is estimated. Finally, MTTF(Mean Time To Failure) and $B_{10}$ life of actuators are calculated. MTTF means the mean life at the confidence level and $B_{10}$ life refers to the time by which 10% of the product would fail. In this study, failure causes and solutions are examined using the reliability analysis.

Crack-Healing Behavior of $Al_2O_3$ Ceramics for Textile Machinery (섬유기기용 $Al_2O_3$계 세라믹스의 균열치유거동)

  • An, B.G.;Kim, M.K.;Ahn, S.H.;Kim, J.W.;Park, I.D.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.60-64
    • /
    • 2006
  • Alumina ceramic for textile machinery was sintered and subjected to three-point bending. A semicircular surface crack was made on each sample. Crack-healing behavior was systematically studied, as a function of crack-healing temperature and crack size. The bending strength and fracture toughness of the crack-healed sample from $1200^{\circ}C\;to\;1400^{\circ}C$ were investigated. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the fracture toughness. Alumina ceramic for textile machinery have the ability to heal after cracking, from over $1300^{\circ}C$. The material can completely heal a $65{\mu}m$ diameter semielliptical crack. The fracture toughness could be explained by 2-parameter Weibull distribution.

  • PDF

A study on simplified fatigue design methodology for composite structures (복합재구조물에 대한 단순화된 수명평가방법 고찰)

  • 김성준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.75-78
    • /
    • 2002
  • A simplified methodology is presented to predict fatigue life and residual strength of composite structures. To avoid excessive amount of tests that are required for model characterization, strength degradation parameter is assumed as function of fatigue life. S-N curve is used to extract fatigue life that is required to characterize the stress levels comprising a randomly-ordered load spectrum. And different stress ratios are handled with Goodman correction approach(fatigue envelope). It is assumed that the residual strength is a function of the number of loading cycles and applied fatigue stress amplitude. And the residual strength distribution after an arbitrary load cycles is represented by two parameter Weibull functions.

  • PDF

An Analysis of Crack Growth Rate Due to Variation of Fatigue Crack Growth Resistance (피로균열전파저항의 변동성에 의한 균열전파율의 해석)

  • Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1139-1146
    • /
    • 1999
  • Reliability analysis of structures based on fracture mechanics requires knowledge on statistical characteristics of the parameter C and m in the fatigue crack growth law, $da/dN=C({\Delta}K)^m$. The purpose of the present study is to investigate if it is possible to predict fatigue crack growth rate by only the fluctuation of the parameter C. In this study, Paris-Erdogan law is adopted, where the author treat the parameter C as random and m as constant. The fluctuation of crack growth rate is assumed only due to the parameter C. The growth resistance coefficient of material to fatigue crack growth (Z=1/C) was treated as a spatial stochastic process, which varies randomly on the crack path. The theoretical crack growth rates at various stress intensity factor range are discussed. Constant ${\Delta}K$ fatigue crack growth tests were performed on the structural steel, SM45C. The experimental data were analyzed to determine the autocorrelation function and Weibull distributions of the fatigue crack growth resistance. And also, the effect of the parameter m of Paris' law due to variation of fatigue crack growth resistance was discussed.

A Review of Dose-response Models in Microbial Risk Assessment (미생물 위해성 평가의 용량-반응 모델에 대한 고찰)

  • 최은영;박경진
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • Dose-response models in microbial risk assessment can be divided into biologically plausible models and empirical models. Biologically plausible models are formed by the assumptions in dose distribution of microbes, host sensitivity to microbes, and minimal infectious dose of microbes : there are Exponential model and $\beta$-Poisson model, representatively. Empirical models are mainly used to express the toxicity of chemicals : there are Weibull-Gamma model etc. Deviance function (Y) is used to fit available data to dose-response models, and some dose-response models for food-borne pathogens are developed in humans and experimental animals.

Analysis the Reliability of Multilayer Ceramic Capacitor with inner Ni Electrode under highly Accelerated Life Test Conditions

  • Yoon, Jung-Rag;Lee, Kyung-Min;Lee, Serk-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.5-8
    • /
    • 2009
  • The reliability of multilayer ceramic capacitor with active thin dielectric layer was investigated by highly accelerated life test at various stress condition. The distribution of multilayer ceramic capacitor failure times is plotted as a function of time from Weibull distribution function. According to the test result, voltage acceleration factor is obtained from 2.24 to 2.96. The acceleration by temperature is much higher than other values of active thick dielectric layer. It is clear that median time to failure is affected by the stress voltage for high volumetric efficiency ceramic capacitors with active thin dielectric layer. The degradation under stress of voltage involves electromigration and accumulation of oxygen vacancy at Ni electrode interface of cathode.