• Title/Summary/Keyword: Weed host

Search Result 32, Processing Time 0.023 seconds

Life Cycle and Host Specificity of Tanysphyrus (Tanysphyroides) major Roelofs (Coleoptera : Curculionidae), a Possible Candidate Agent for the Biological Control of Monochoria vaginalis var. plantaginea (물달개비의 생물학적 방제인자 물달개비바구미의 생활사 및 기주특이성)

  • Park, Jin-Young;Park, Jae-Eup;Lee, In-Yong;Kwon, Oh-Seok;Park, Jong-Kyun
    • Korean Journal of Weed Science
    • /
    • v.31 no.1
    • /
    • pp.103-111
    • /
    • 2011
  • Monochoria vaginalis var. plantaginea (Pontederiaceae) is one of the most problematic weed in the rice field in Korea. Tanysphyrus (Tanysphyroides) major was selected as a potential biological control agent for M. vaginalis. Continuous rearing of T. (T.) major was carried out from 2006 to 2007, and its morphological characteristics and ecological characteristics were investigated. This species has a single generation per year, over-wintering as an adult stage. The emergence of adults starts in later June and last until September. These observations indicate that T. (T.) major takes $22{\pm}0.7$ days to develop from egg to adulthood. Host specificity test showed that finally selected this species was suitable candidates for the biological control of M. vaginalis var. plantaginea since it showed negative host specificity against major 60 test crops.

Three Different Viruses Isolated from Typical Weed Plants that Grown Adjacent to Common Crop Fields

  • Kwon, Sun-Jung;Choi, Hong-Soo;Han, Jung-Heon;La, Yong-Joon;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.16 no.6
    • /
    • pp.297-305
    • /
    • 2000
  • Weeds are widely grown in the field and are infected by many viruses. A survey was conducted to identify viruses infecting weeds in Korea. Virus-infected weed samples including Rorippa indica (L.) Hiern, R. islandica (Oed.) Bord, Crepidiastrum denticulatum (Houtt.) Pak & Kawanno, Achyranthes japonica (Miq.) Nakai, and Chrysanthemum boreale (Makino) Makino were collected in Kyonggi Province. These weeds were grown in the greenhouse and were isolated on 10 test plants. Several virus isolates were isolated fron infected tissues and were further studied by host range assay, serological test, electron microscopy (EM), reverse transcription-polymerase chain reaction (RT-PCR) and sequencing. Each isolated virus strain was mechanically transmitted to weeds and various hosts including Nicotiana spp., Brassica spp., Vigna unguiculata, Capsicum annuum, and Cucumis sativus and showed systemic mosaic, vein clearing, necrosis, mottle, malformation, chlorosis, and/or death of host plants in some cases. Each virus was then purified using infected leaves and observed by EM. From these results three viruses were isolated and identified as Turnip mosaic virus (TuMV), Broad bean wilt virus (BBWV), and Cucumber mosaic virus (CMV). RT-PCR using virus-specific oligonucleotide primers and the cloning were conducted to determine the nucleotide sequences of coat proteins of the three viruses their amino acid sequence were deduced. The amino acid sequence homologies were about 92.7 to 99.7%, 96.2 to 97.7%, and 93.9 to 98.6% to other reported TuMV, BBWV, and CMV strains, respectively. These results suggest that many weeds may serve as primary inoculum source of diseases caused by TuMV, BBWV, CMV and that the management of these viral diseases can be achieved through weed control.

  • PDF

Biological Control of Some Serious Weeds in Dakahlia District. II. Mycoherbicial Production and Physiological Host Responses

  • Abdel-Fattah, Gamal M.
    • Mycobiology
    • /
    • v.30 no.2
    • /
    • pp.96-101
    • /
    • 2002
  • Four pathogenic fungal isolates belonging to different genera including Alternaria, Fusarium and Curvularia were isolated from selected diseased weeds growing in the fields in Dakahalia district. The inoculum of these pathogenic fungi specific to weeds were cultured, standardized and formulated as alginate pellets containing mycelium plus culture filtrate. These mycoherbicides were evaluated for disease severity(DS). Maximum DS was obtained with the alginate pellets of mycelium filtrate Fusarium solani. Physiological changes of the treated weed were determined 5 aiid 10 days after treatments. As compared to the healthy weeds, all mycoherbicide formulations significantly decreased the amount of photosynthetic pigments and subsequently soluble and insoluble sugars in the infected weeds. The mycoherbicide formulation of F. solani had the greatest effect on lowering to the abovementioned amount in the leaves of Chenopodium murale. Generally, treatment of weed leaves with the specific mycoherbicide led to a highly significant increase in total phenol content when compared to the healthy control weed. C. murale infected with the mycoherbicide formulation of F. solani had higher levels of phenolic compounds than those other treated weeds particularly after 10 days of inoculation.

Population of Rice Stripe Virus-Viruliferous Insect and Natural Weed Host of Rice Stripe Virus.

  • Park, Jin-Woo;Jin, Tae-sung;Shin, Dong-bum;Park, Byung-ryul;Kim, Jin-young;Oh, In-suk;Lee, B. C.;T. H. Noh;S. J. Ko
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.140.2-141
    • /
    • 2003
  • Among over-wintering small brown planthoppers, population of the rice stripe virus (RSV)-viruliferous insects was surveyed throughout the country in late April of 2003 by using DAS-ELISA. Averaged population of the RSV-viruliferous insects in this year was 2.1%, which was lower than that of last year of 3.7%. However, the insect population in Seoul, Incheon and Kyeonggi areas were relatively high showing 6.7%, 6.2% and 2.6%, respectively. Based on the survey results, it was expected that overall occurrence of RSV on rice could be decreased in this year, except certain areas. Ovarial transmission rate of RSV by the insects on diseased rice samples collected from 10 areas ranged from 22.2% to 77.8%. Among 35 graminous weed species collected from rice fields in Ganghwa and Kimpo in 2002 and 2003, common reed and formosens were found to be infected by RSV. The result indicates that those weeds are potential alternative natural hosts of the RSV Further studies on ecological and pathological impacts of the alternative natural host of RSV are being processed.

  • PDF

Life Cycle-Based Host Range Analysis for Tomato Spotted Wilt Virus in Korea

  • Kil, Eui-Joon;Chung, Young-Jae;Choi, Hong-Soo;Lee, Sukchan;Kim, Chang-Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.67-75
    • /
    • 2020
  • Tomato spotted wilt virus (TSWV) is one of the plant viruses transmitted by thrips and causes severe economic damage to various crops. From 2008 to 2011, to identify natural host species of TSWV in South Korea, weeds and crops were collected from 5 regions (Seosan, Yesan, Yeonggwang, Naju, and Suncheon) where TSWV occurred and were identified as 1,104 samples that belong to 144 species from 40 families. According to reverse transcription-polymerase chain reaction, TSWV was detected from 73 samples from 23 crop species, 5 of which belonged to family Solanaceae. Additionally, 42 weed species were confirmed as natural hosts of TSWV with three different life cycles, indicating that these weed species could play an important role as virus reservoirs during no cultivation periods of crops. This study provides up-to-date comprehensive information for TSWV natural hosts in South Korea.

Phytophagous Insect Fauna of Dicotyledoneae(Tracheophyta : Angiospermae) Weeds (쌍자엽 식물아강(관속식물문 : 피자식물강)의 잡초가해 곤충상)

  • ;;Patrick J.Shea
    • Korean journal of applied entomology
    • /
    • v.31 no.4
    • /
    • pp.496-508
    • /
    • 1992
  • Phytophagous insects associated with Dicotyledoneae weeds and host specificities in the field populations were investigated for the survey of biological control agents of weeds in Korea. Fifty four weed species in 39 genera were collected during the survey. The most insects were collected from Polygonales by 24 species in 22 genera and followed by Urticales and Centrospermales by 17 species of 17 genera. The insects collected in the other weed orders were ranged from 1 to 12 species. Out of 17 insect species collected in Urticales, Baris sp. damaged the leaves of Hamulus japonicus in Cannabinaceae as scattered holeshape and showed host specificity. In Polygonaceae, Rumex japonicus and R. crispus were severely damaged by Aphis rumicis and Gastrophysa atrocyanea. G. atrocyanea leaf beetle had host specificity on R. japonicus and ate all the leaves except veins. The leaf beetle, Lypesthes japonicus was a potential biological control agent by feeding leaves of Persicaria spp .. And Lixus spp. were also often collected from Persicaria spp .. Liothrips vaneeckei was first collected from weed, P. modosa. P. senticosa was damaged by unidentified geometrid moth larvae and P. perfoiliata by Miarus atricolor snout beetle. Cassida piperata damaged leaves of Chenopodium album of Centrospermales and showed host specificity. In a soybean field, C. album and Amaranthus mangostanus were severely damaged by Spodoptera litura larvae which were eating soybean leaves. This phenomenon indicates that the presence of weed in cultivated land influences the outbreak of insect pests. Altica oleracea leaf beetle was frequently collected from Oenothera spp. of Onagraceae in Myrtales. Aphis gossyphi was outbroken on Solanum nigrum and Phylliodes brettinghami leaf beetle was first recorded on the same plant. Leaf beetles, Longitarsus scutellais and Hemipyxis plagioderoides were first collected from Plantago asiatica of Plantaginaceae in Plantaginales. They showed host specificities in the fields. The hemipterans were collected from many weeds during the survey and their roles on weeds should be investigated. A tractomorpha bedeli was also collected from many kinds of weeds in forest areas.

  • PDF

Occurrence of Leaf Spot Disease Caused by Alternaria crassa (Sacc.) Rands on Jimson Weed and Potential Additional Host Plants in Algeria

  • Bessadat, Nabahat;Hamon, Bruno;Bataille-Simoneau, Nelly;Chateau, Corentin;Mabrouk, Kihal;Simoneau, Philippe
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.179-184
    • /
    • 2020
  • A leaf spot pathogen Alternaria sp. was recovered from jimson weed, tomato, parsley, and coriander collected during surveys of blight diseases on Solanaceae and Apiaceae in Algeria. This species produced large conidial body generating long apical beaks that tapered gradually from a wide base to a narrow tip and short conidiophores originating directly from the agar surface. This species exhibited morphological traits similar to that reported for Alternaria crassa. The identification of seven strains from different hosts was confirmed by sequence analyses at the glyceraldehyde-3-phosphate dehydrogenase, RNA polymerase second largest subunit, and translation elongation factor 1-alpha loci. Further the pathogen was evaluated on jimson weed, coriander, parsley, and tomato plants, and this fungus was able to cause necrotic lesions on all inoculated plants. A. crassa is reported for the first time as a new species of the Algerian mycoflora and as a new potential pathogen for cultivated hosts.

Weeding Efficacy of Sulfonylurea Resistance Weed, Monochoria (Monochoria vaginalis) with Brown Leaf Blight Caused by BWC01-54

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Song, Seok-Bo;Hwang, Jae-Bok;Park, Sung-Tae
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.77-82
    • /
    • 2005
  • A summer annual weed of monochoria (Monochoria vaginalis) grows in the edges of rice paddies, ditches, and moist upland throughout Korea. It is very difficult to control with herbicide because of its sulfonylurea resistance. It is very competitive with fast growing pattern, that can cause reducing yields of rice. Brown leaf blight of monochoria (Monochoria vaginalis) occurred naturally in rice paddy, is first reported in Korea. The fungal isolate BWC01-54 was successfully isolated from the diseased leaves of monochoria. The fungus BWC 01-54 was grown well at $25-28^{\circ}C$, conidia of the greysh black brown mycelia were abundant produced on PDA at 15 days. The fungus was grown well in potato dextrose broth at $28^{\circ}C$ and fully grown within 10 days in 250 ml of flask. In host and pathogenicity test, conidia suspension of BWC01-54 was the most effective to control of monochoria compare to others isolates. Typical symptoms having pin point brown lesions were formed on stem and leaf and which severely affected the whole plants ware blighted within two weeks, respectively. Under paddies field condition, conidial suspension of the fungus BWC01-54 gave around 90% control. Therefore, we conclude that the fungus may have a potential as a biological control agent against sulfonylurea resistance weed in rice paddy.

Tolerance: An Ideal Co-Survival Crop Breeding System of Pest and Host in Nature with Reference to Maize

  • Kim, Soon-Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.59-70
    • /
    • 2000
  • In nature, plant diseases, insects and parasites (hereafter called as "pest") must be co-survived. The most common expression of co-survival of a host crop to the pest can be tolerance. With tolerance, chemical uses can be minimized and it protects environment and sustains host productivity and the minimum pest survival. Tolerance can be applicable in all living organisms including crop plants, lifestocks and even human beings. Tolerant system controls pest about 90 to 95% (this pest control system often be called as horizontal or partial resistance), while the use of chemicals or selection of high resistance controls pest 100% (the most expression of this control system is vertical resistance or true resistance). Controlling or eliminating the pests by either chemicals or vertical resistance create new problems in nature and destroy the co-survial balance of pest and host. Controlling pests through tolerance can only permit co-survive of pests and hosts. Tolerance is durable and environmentally-friend. Crop cultivars based on tolerance system are different from those developed by genetically modified organism (GMO) system. The former stabilizes genetic balance of a pest and a host crop in nature while the latter destabilizes the genetic balance due to 100% control. For three decades, the author has implemented the tolerance system in breeding maize cultivars against various pests in both tropical and temperate environments. Parasitic weed Striga species known as the greatest biological problem in agriculture has even been controlled through this system. The final effect of the tolerance can be an integrated genetic pest management (IGPM) without any chemical uses and it makes co-survival of pests in nature.in nature.

  • PDF

Identification of Leonurus sibiricus as a Weed Reservoir for Three Pepper-Infecting Viruses

  • Kwon, Sun-Jung;Choi, Gug-Seoun;Yoon, Ju-Yeon;Seo, Jang-Kyun;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.65-69
    • /
    • 2016
  • In plant virus ecology, weeds are regarded as wild reservoirs of viruses and as potential sources for insect-mediated transmission of viruses. During field surveys in 2013-2014, three Leonurus sibiricus plants showing virus-like symptoms were collected from pepper fields in Daegu, Seosan, and Danyang in Korea. Molecular diagnosis assays showed that the collected L. sibiricus samples were infected with either Tomato spotted wilt virus (TSWV), Pepper mild mottle virus (PMMoV), or Beet western yellow virus (BWYV), respectively. Since this is the first identification of TSWV, PMMoV, and BWYV from L. sibiricus, complete genome sequences of three virus isolates were determined to examine their phylogenetic relationships with the previously reported strains and isolates. Phylogenetic analyses performed using full genome sequences of the viruses showed the isolates of TSWV and PMMoV obtained from L. sibiricus are closely related to the pepper isolates of the corresponding viruses. Our results suggest that L. sibiricus could act an alternative host and reservoir of viruses that cause damages in pepper fields.