• Title/Summary/Keyword: Web-flange interaction

Search Result 12, Processing Time 0.031 seconds

A Study for an Evaluation of Flexural Strength of Plate Girders Reinforced with One Line of Longitudinal Stiffeners (수평보강재로 1단 보강된 플레이트거더의 휨강도 평가 방안 연구)

  • Kim, Byung Jun;Park, Yong Myung;Mykyta, Kovalenko;Cho, Kwang Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.281-289
    • /
    • 2017
  • The current AASHTO LRFD and Eurocode 3 specifications have been found to underestimate the flexural strength of longitudinally reinforced plate girders. This is because the web-flange interaction is not considered appropriately when a web is reinforced. The buckling strength of compression flange increases due to the improved rotational restraint to the compression flange. Also, the compression flange and the longitudinal stiffener could constrain the web rotation, so that a certain area of the web reaches yield strength. In this study, a model for evaluating the flexural strength is proposed for plate girders reinforced with one line of longitudinal stiffeners, considering the increase of the buckling strength of the compression flange and the actual stress distribution of the web. The flexural strengths of the conventional steel(SM490) and the high-strength steel(HSB800) plate girders were evaluated from the nonlinear analysis and the applicability of the proposed model was analyzed.

Stability limit state design of box sections supporting mining and process facilities

  • Bedair, Osama
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.643-659
    • /
    • 2011
  • The design of box girders requires the determinations the buckling stress of the flange and the webs. Existing design equations available in codes of practice ignore the interactions between the box girder components. The paper illustrates the influence of the geometric interaction on the buckling stress of box girders. Generalized equations are first derived in terms of the web the flange geometric properties. Industrial examples are then presented showing the variation of the flange buckling stress for various stiffening configurations. The influence of the flange/web proportions on the buckling stress of box girder components is also highlighted. It is shown that buckling strength of the flange is largely affected by the restraints imposed by the webs or attached diaphragms. Graphs are presented showing various limiting states of box girders. These graphs are useful to use in practice in order to achieve economical and efficient design of box girders and rationally predict local buckling stress.

Ultimate section capacity of steel thin-walled I-section beam-columns

  • Salem, Adel Helmy;Sayed-Ahmed, Ezzeldin Yazeed;El-Serwi, Ahmed Abdelsalam;Korashy, Mohamed Mostafa
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.367-384
    • /
    • 2004
  • A numerical model based on the finite element technique is adopted to investigate the behavior and strength of thin-walled I-section beam-columns. The model considers both the material and geometric nonlinearities. The model results were first verified against some of the currently available experimental results. A parametric study was then performed using the numerical model and interaction diagrams for the investigated beam-columns have been presented. The effects of the web depth-to-thickness ratio, flange outstand-to-thickness ratio and bending moment-to-normal force ratio on the ultimate strength of thin-walled I-section beam-columns were scrutinized. The interaction equations adopted for beam columns design by the NAS (North American Specifications for the design of cold formed steel structural members) have been critically reviewed. An equation for the buckling coefficient which considers the interaction between local buckling of the flange and the web of a thin-walled I-section beam-column has been proposed.

Shear-bending interaction strength of locally buckled I-sections

  • El Aghoury, M.;Hanna, M.T.
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.145-158
    • /
    • 2008
  • In slender sections there is a substantial post-buckling strength provided after the formation of local buckling waves. These waves happened due to normal stresses or shear stresses or both. In this study, a numerical investigation of the behavior of slender I-section beams in combined pure bending and shear has been described. The studied cases were assumed to be prevented from lateral torsional buckling. To achieve this aim, a finite element model that simulates the geometric and material nonlinear nature of the problem has been developed. Moreover, the initial geometric imperfections were included in the model. Different flange and web width-thickness ratios as well as web panel aspect ratios have been considered to draw complete set of interaction diagrams. Results reflect the interaction behavior between flange and web in resisting the combined action of moments and shear. In addition, the web panel aspect ratio will not significantly affect the combined ultimate shear-bending strength as well as the post local buckling strength gained by the section. Results are compared with that predicted by both the Eurocode 3 and the American Iron and Steel specifications, AISI-2001. Finally, an empirical interaction equation has been proposed.

Effects of flange and web slenderness ratios on elastic flange local buckling of doubly symmetric I-girders (이축 대칭 I형 거더의 플랜지 탄성좌굴에 대한 플랜지와 복부판 세장비의 영향)

  • Lee, Jeong-Hwa;Lee, Kee-Sei;Byun, Nam-Joo;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.456-464
    • /
    • 2016
  • Increasing the strength of structural materials allows their self-weight to be reduced and this, in turn, enables the structures to satisfy esthetic requirements. The yield strength of high-performance steel is almost 480 MPa, which is approximately 50% higher than that of general structural steel. The use of high strength materials, however, makes the sections more slender, which can potentially result in significant local stability problems. The strength of slender element sections might be governed by their elastic buckling behavior, and the elastic buckling strength is very sensitive to the boundary conditions. Because the web provides the boundary conditions of the compressive thin-flange, the stiffness of the web can affect the elastic buckling strength of the flange. In this study, therefore, the effects of the flange and web slenderness ratios on the elastic flange local buckling of I-girders subjected to a pure bending moment were evaluated by finite element analysis (FEA). The analysis results show that the elastic local buckling strength and buckling modes were affected not only by the web support conditions, but also by the flange and web slenderness ratios.

Local Buckling Characteristics of a column with I section (I형강기둥의 국부좌굴 특성)

  • 임종완;임장근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.18-26
    • /
    • 1994
  • The buckling characteristics of I - shaped columns which are composed of thin web and equal upper/lower flange plates are generally classified into the local and global modes. In this paper, its local buckling problem has been formulated on the basis of the assumed buckling modes using the finite element method for beams and plates. The effects of local bucklings are studied for various size rations and end conditions of I-shaped columns. The calculated results are comparatively well consistent with values obtained from the existing studies. The global buckling characteristics calculated by the present method are in good agreement with the classical rigid web solution

  • PDF

Numerical study on buckling of steel web plates with openings

  • Serror, Mohammed H.;Hamed, Ahmed N.;Mourad, Sherif A.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1417-1443
    • /
    • 2016
  • Cellular and castellated steel beams are used to obtain higher stiffness and bending capacity using the same weight of steel. In addition, the beam openings may be used as a pass for different mechanical fixtures such as ducts and pipes. The aim of this study is to investigate the effect of different parameters on both elastic and inelastic critical buckling stresses of steel web plates with openings. These parameters are plate aspect ratio; opening shape (circular or rectangular); end distance to the first opening; opening spacing; opening size; plate slenderness ratio; steel grade; and initial web imperfection. The web/flange interaction has been simplified by web edge restraints representing simply supported boundary conditions. A numerical parametric study has been performed through linear and nonlinear finite element (FE) models, where the FE results have been verified against both experimental and numerical results in the literature. The web plates are subject to in-plane linearly varying compression with different loading patterns, ranging from uniform compression to pure bending. A buckling stress modification factor (${\beta}$-factor) has been introduced as a ratio of buckling stress of web plate with openings to buckling stress of the corresponding solid web plate. The variation of ${\beta}$-factor against the aforementioned parameters has been reported. Furthermore, the critical plate slenderness ratio separating elastic buckling and yielding has been identified and discussed for two steel grades of DIN-17100, namely: ST-37/2 and ST-52/3. The FE results revealed that the minimum ${\beta}$-factor is 0.9 for web plates under uniform compression and 0.7 for those under both compression and tension.

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

An Experimental Study on the Ultimate Strength and Deformation Capacity of Composite Beams with Eccentric Web Openings (편심유공합성보의 종국내력 및 변형능력에 관한 실험적 연구)

  • Choi, San Ho;Seo, Seong Yeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.595-604
    • /
    • 2000
  • Web openings of large beams provide space for wiring, piping, and duct work to provide for proper drainage, pipes and duct must be slightly sloped with the attendant result that all web openings can not be centered on the centroidal axes of the beams. Test specimens are made for opening-depth to beam-depth ratio of 0.5 and for eccentricities of the opening center line of 10% from middepth of the beam because of the proximity of the opening edge to the flange. In this paper, available test results and theories relating to the strength of composite beams having eccentric rectangular openings are surveyed and experiments were carried out to examine the structural behaviors. In all the tests in this paper good agreement is demonstrated with maximum loads measured in tests, and observed failure modes Furthermore, compared with analytical values and experimental values of interaction diagram between moment and shear capacity were safed as it is scattered with outer part of the analytical values.

  • PDF

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.