• Title/Summary/Keyword: Web-Shear

Search Result 353, Processing Time 0.025 seconds

Simplified method for prediction of elastic-plastic buckling strength of web-post panels in castellated steel beams

  • Liu, Mei;Guo, Kangrui;Wang, Peijun;Lou, Chao;Zhang, Yue
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.671-684
    • /
    • 2017
  • Elastic-plastic shear buckling behaviors of the web-post in a Castellated Steel Beam (CSB) with hexagonal web openings under vertical shear force were investigated further using Finite Element Model (FEM) based on a sub-model, which took the upper part of the web-post under horizontal shear force to represent the whole web-post under vertical shear force. A simplified design method for the web-post elastic-plastic shear buckling strength was proposed based on simulation results of the sub-model. Proper boundary conditions were applied to the sub-model to assure that its behaviors were identical to those of the whole web-post. The equation to calculate the thin plate elastic shear buckling strength was adopted as the basic form to build the design equation for elastic-plastic buckling strength of the sub-model. Parameters that might affect the elastic-plastic shear buckling strength of the whole web-post were studied. After obtaining the vertical shear buckling strength of a sub-model through FEM, the shear buckling coefficient k can be obtained through the back analysis. A practical calculation method for k was proposed through curving fitting the parameter study results. The elastic-plastic shear buckling strength of the web-post calculated using the proposed shear buckling coefficient k agreed well with that obtained from the FEM and test results. And it was more precise than those obtained from EC3 based on the strut model.

The Shear Effects of the Web Reinforcement Area and Arrangement in R.C. Deep Beams (철근콘크리트 깊은보에서 전단보강근량 및 배치가 전단거동에 미치는 효과)

  • 윤정민;김미경;연규원;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.885-890
    • /
    • 2000
  • 12 RC deep beams with a/d = 1.17 are reported. This paper is to study the effect of vertical and horizontal web reinforcement and web reinforcement arrangement on inclined cracking shear, ultimate shear strength, midspan deflection, and inclined crack width. Test results indicated that web reinforcement produces and arrangement seems to moderately affect inclined cracking shear, ultimate shear strength and crack width. However, addition of horizontal web reinforcement(pv = 0.0085) little or no influence on inclined cracking shear, ultimate shear strength and crack width. The member which vertical and horizontal web reinforcement concentrate on the center web considerably increases in load-carrying capacity.

Shear strength of steel beams with trapezoidal corrugated webs using regression analysis

  • Barakat, Samer;Mansouri, Ahmad Al;Altoubat, Salah
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.757-773
    • /
    • 2015
  • This work attempts to implement multiple regression analysis (MRA) for modeling and predicting the shear buckling strength of a steel beam with corrugated web. It was recognized from theoretical and experimental results that the shear buckling strength of a steel beam with corrugated web is complicated and affected by several parameters. A model that predicts the shear strength of a steel beam with corrugated web with reasonable accuracy was sought. To that end, a total of 93 experimental data points were collected from different sources. Then mathematical models for the key response parameter (shear buckling strength of a steel beam with corrugated web) were established via MRA in terms of different input geometric, loading and materials parameters. Results indicate that, with a minimal processing of data, MRA could accurately predict the shear buckling strength of a steel beam with corrugated web within a 95% confidence interval, having an $R^2$ value of 0.93 and passing the F- and t-tests.

Web-shear strength of steel-concrete composite beams with prestressed wide flange and hollowed steel webs: Experimental and practical approach

  • Han, Sun-Jin;Kim, Jae Hyun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.311-321
    • /
    • 2022
  • In the buildings with long spans and high floors, such as logistics warehouses and semiconductor factories, it is difficult to install supporting posts under beams during construction. Therefore, the size of structural members becomes larger inevitably, resulting in a significant increase in construction costs. Accordingly, a prestressed hybrid wide flange (PHWF) beam with hollowed steel webs was developed, which can reduce construction costs by making multiple openings in the web of the steel member embedded in concrete. However, since multiple openings exist and prestress is introduced only into the bottom flange concrete, it is necessary to identify the shear resistance mechanism of the PHWF beam. This study presents experimental shear tests of PHWF beams with hollowed steel webs. Four PHWF beams with cast-in-place (CIP) concrete were fabricated, with key variables being the width and spacing of the steel webs embedded in the concrete and the presence of shear reinforcing bars, and web-shear tests were conducted. The shear behavior of the PHWF beam, including crack patterns, strain behavior of steel webs, and composite action between the prestressed bottom flange and CIP concrete, were measured and analyzed comprehensively. The test results showed that the steel web resists external shear forces through shear deformation when its width is sufficiently large, but as its width decreased, it exerted its shear contribution through normal deformation in a manner similar to that of shear reinforcing bars. In addition, it was found that stirrups placed on the cross section where the steel web does not exist contribute to improving the shear strength and deformation capacity of the member. Based on the shear behavior of the specimens, a straightforward calculation method was proposed to estimate the web-shear strength of PHWF beams with CIP concrete, and it provided a good estimation of the shear strength of PHWF beams, more accurate than the existing code equations.

Web-shear capacity of prestressed hollow-core slab unit with consideration on the minimum shear reinforcement requirement

  • Lee, Deuck Hang;Park, Min-Kook;Oh, Jae-Yuel;Kim, Kang Su;Im, Ju-Hyeuk;Seo, Soo-Yeon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.211-231
    • /
    • 2014
  • Prestressed hollow-core slabs (HCS) are widely used for modern lightweight precast floor structures because they are cost-efficient by reducing materials, and have excellent flexural strength and stiffness by using prestressing tendons, compared to reinforced concrete (RC) floor system. According to the recently revised ACI318-08, the web-shear capacity of HCS members exceeding 315 mm in depth without the minimum shear reinforcement should be reduced by half. It is, however, difficult to provide shear reinforcement in HCS members produced by the extrusion method due to their unique concrete casting methods, and thus, their shear design is significantly affected by the minimum shear reinforcement provision in ACI318-08. In this study, a large number of shear test data on HCS members has been collected and analyzed to examine their web-shear capacity with consideration on the minimum shear reinforcement requirement in ACI318-08. The analysis results indicates that the minimum shear reinforcement requirement for deep HCS members are too severe, and that the web-shear strength equation in ACI318-08 does not provide good estimation of shear strengths for HCS members. Thus, in this paper, a rational web-shear strength equation for HCS members was derived in a simple manner, which provides a consistent margin of safety on shear strength for the HCS members up to 500 mm deep. More shear test data would be required to apply the proposed shear strength equation for the HCS members over 500 mm in depth though.

An Experimental Study on the Shear Behavior of High Strength Concrete Deep Beam (고강도 철근 콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • 함영삼;양근혁;이영호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.897-902
    • /
    • 2001
  • The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beam and to grasp the conservatism of ACI Building Code. Experimental results on 12 deep beams under two equal symmetrically placed point loads are reported. Main variables are vertical and horizontal web reinforcement and shear span-to-overall depth ratio. Test results indicated that web reinforcement dose not affect on formation of inclined cracks but shear span-to-overall depth ratio affect on inclined shear cracks and ultimate shear strength. Addition of vertical web reinforcement improves ultimate shear strength of H.S.C. deep beams that shear span-to-overall depth ratio is 1.0. Considerable increase in ultimate shear strength of H.S.C. deep beams with increasing horizontal web reinforcement that shear span-to-overall depth ratio is 0.5. Especially with increasing concrete strength($f_{ck}$) the ACI code is conservative in estamating the ultimate shear strength of deep beams.

  • PDF

Shear resistance of corrugated web steel beams with circular web openings: Test and machine learning-based prediction

  • Yan-Wen Li;Guo-Qiang Li;Lei Xiao;Michael C.H. Yam;Jing-Zhou Zhang
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.103-117
    • /
    • 2023
  • This paper presents an investigation on the shear resistance of corrugated web steel beams (CWBs) with a circular web opening. A total of five specimens with different diameters of web openings were designed and tested with vertical load applied on the top flange at mid-span. The ultimate strengths, failure modes, and load versus middle displacement curves were obtained from the tests. Following the tests, numerical models of the CWBs were developed and validated against the test results. The influence of the web plate thickness, steel grade, opening diameter, and location on the shear strength of the CWBs was extensively investigated. An XGBoost machine learning model for shear resistance prediction was trained based on 256 CWB samples. The XGBoost model with optimal hyperparameters showed excellent accuracy and exceeded the accuracy of the available design equations. The effects of geometric parameters and material properties on the shear resistance were evaluated using the SHAP method.

Experimental and analytical study on the shear strength of corrugated web steel beams

  • Barakat, Samer;Leblouba, Moussa
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.251-266
    • /
    • 2018
  • Compared to conventional flat web I-beams, the prediction of shear buckling stress of corrugated web steel beams (CWSBs) is not straightforward. But the CWSBs combined advantages of lightweight large spans with low-depth high load-bearing capacities justify dealing with such difficulties. This work investigates experimentally and analytically the shear strength of trapezoidal CWSBs. A set of large scale CWSBs are manufactured and tested to failure in shear. The results are compared with widely accepted CWSBs shear strength prediction models. Confirmed by the experimental results, the linear buckling analyses of trapezoidal corrugated webs demonstrated that the local shear buckling occurs only in the flat plane folds of the web, while the global shear buckling occurs over multiple folds of the web. New analytical prediction model accounting for the interaction between the local and global shear buckling of CWSBs is proposed. Experimental results from the current work and previous studies are compared with the proposed analytical prediction model. The predictions of the proposed model are significantly better than all other studied models. In light of the dispersion of test data, accuracy, consistency, and economical aspects of the prediction models, the authors recommend their proposed model for the design of CWSBs over the rest of the models.

Elastic Shear Buckling Strength of Steel Composite Box Girder Web Panel (강합성 박스거더 복부판의 탄성전단강도 연구)

  • Kim, Dae-Hyeok;Han, Sang-Yun;Kim, Jung-Hun;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.30-37
    • /
    • 2013
  • It is same such as the provision of shear buckling strength of steel composite box girder web panel and plate girder web panel in Korea Highway Bridge Design Standards(2012). But the web panel of steel composite box girder is different from the web of plate girder in that the upper slab and lower flange are connected to the web. So a different shear behavior of the girders is expected. In this study, To calculate a reasonable elastic shear buckling strength of steel composite box girder web panel, ABAQUS program was used. The results from F.E.A and previous studies are compared. It is shown that the web shear buckling strength of steel composite box girder of Korea Highway Bridge Design Standards(2012) is the most conservative.

An Experimental Study on the Shear Strength of R.C Beam with Web reinforcement (전단보강이 된 철근콘크리트보의 전단강도에 관한 실험적 연구)

  • 이근광;홍기섭;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.184-189
    • /
    • 1993
  • This is an experimental investigation the shear behavior of reinforced concrete with stirrup of which stress ranges 0.0㎏/㎠ to 7.0㎏/㎠. Five rectangular beams which concrete strengths are 287㎏/㎠ and 380㎏/㎠, a/d=3, and main steel ratio equal to 1.96% was tested. Those were designed to fail in shear. The shear cracking load and failure load were measured and compared with ACI's equation and Zutty's proposed equation. The results are following : ACI equation and Zutty's equation are consertive. As the concrete compressive strength increased, reserved shear strength of beams with minimum web reinforcement decreases. According to increase of web reinforcement , the rate of increases of shear strength is decreased. The failure modes of specimen with minimum web reinforcement are shear compression failure which is reached after diagonal shear cracking.

  • PDF