• Title/Summary/Keyword: Web-Based learning

Search Result 1,322, Processing Time 0.021 seconds

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

The application of photographs resources for constructive social studies (구성주의적 사회과 교육을 위한 사진자료 활용방안)

  • Lee, Ki-Bok;Hwang, Hong-Seop
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.117-138
    • /
    • 2000
  • This study is, from the view point of constructive social studies which is the foundation of the 7th curriculum, to explore whether there is any viable program and to investigate it by which students, using photo resources in social studies, can organize their knowledge in the way of self-directed thinking. The main results are as follows: If it is a principle of knowledge construction process of constructive social studies that individual construction (cognitive construction) develops into communal construction(social construction) and yet communal construction develops itself, interacting with individual construction, it will be meet the objectives of social studies. In social studies, photos are a powerful communication tool. communicating with photos enables to invoke not only the visual aspects but also invisible aspects of social phenomena from photos. It, therefore, can help develop thinking power through inquiry learning, which is one of the emphasis of the 7th curriculum. Having analyzed photo resources appeared on the regional textbooks in elementary social studies, they have been appeared that even though the importance and amount of space photo resources occupy per page is big with regard to total resources, most of the photos failed to lad to self-directed thinking but just assistant material in stead. Besides, there appeared some problems with the title, variety, size, position, tone of color, visibility of the photos, and further with the combination of the photos. Developing of photo resources for constructive social studies is to overcome some problems inherent in current text books and to reflect the theoretical background of the 7th curriculum. To develop the sort of photo that can realize the point just mentioned, it would be highly preferable to provide photo database to facilitate study with homepage through web-based interaction. To take advantage of constructive photo resources, the instruction is strategized in four stages, intuition, conflict, accommodation, and equilibration stage. With the advancement of the era of image culture, curriculum developers are required to develop dynamic, multidimensional digital photos rather than static photos when develop text books.

  • PDF