• Title/Summary/Keyword: Web Study site

Search Result 953, Processing Time 0.019 seconds

An Analysis of Epidemiological Investigation Reports Regarding to Pathogenic E. coli Outbreaks in Korea from 2009 to 2010 (최근 2년간(2009-2010) 우리나라 병원성 대장균 식중독 역학조사 보고서 분석)

  • Lee, Jong-Kyung;Park, In-Hee;Yoon, Kisun;Kim, Hyun Jung;Cho, Joon-Il;Lee, Soon-Ho;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.366-374
    • /
    • 2012
  • Recently pathogenic E. coli is one of the main foodborne pathogens resulting in many patients in Korea. To understand the characteristics of pathogenic E. coli outbreaks in Korea, the epidemiological investigation reports of pathogenic E. coli outbreak in 2009 (41 reports) and in 2010 (27 reports) were collected in the web site of the Korea Centers for Disease Control and Prevention, reviewed and analysed in this study. The main places of the pathogenic E. coli outbreaks were food catering service area (64.8%) and restaurants (25.0%). The main type of the pathogens were EPEC (44.7%) and ETEC (34.2%). EAEC and EHEC was responsible for 10.5 and 9.2%, respectively. Eight of 68 outbreak cases were caused by more than 2 types of pathogenic E. coli which implicates the complicated contamination pathways of pathogenic E. coli. The incidence rate of pathogenic E. coli was $33.6{\pm}30.5%$ and the main symptoms were diarrhea, stomach ache, nausea, vomiting, and fever etc. The two identified food sources were identified as frozen hamburger pattie and squid-vegetable mixture. To improve the food source identification by epidemiological investigation, food poisoning notification to the agency should not be delayed, whole food items attributed the outbreak should be collected and detection method of the various pathogenic E. coli in food has to be improved. In conclusion, the characteristics between the EHEC outbreaks in the western countries and the EPEC or ETEC outbreaks in Korea needs to be distinguished to prepare food safety management plan. In addition, the development of the trace back system to find the contamination pathway with the improved detection method in food and systemic and cooperative support by the related agencies are necessary.

Trophic Level and Ecological Niche Assessment of Two Sympatric Freshwater Fish, Microphysogobio rapidus and Microphysogobio yaluensis Using Stable Isotope Analysis (안정동위원소 분석을 활용한 멸종위기종 여울마자와 동서종 돌마자의 영양단계 및 생태적 지위 평가)

  • Dae-Hee Lee;Hye-Ji Oh;Yerim Choi;Geun-Hyeok Hong;InHyuck Baek;Keun-Sik Kim;Kwang-Hyeon Chang;Ju-Duk Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.1
    • /
    • pp.39-50
    • /
    • 2024
  • In ecosystems within limited resources, interspecific competition is inevitable, often leading to the competitive exclusion of inferior species. This study aims to provide foundational information for the conservation and restoration management of Microphysogobio rapidus by evaluating species' ecological response to biological factors within its habitat. To understand this relationship, we collected food web organisms from site where M. rapidus coexist with Microphysogobio yaluensis, a specie ecologically similar to M. rapidus, and evaluated the trophic levels (TL), isotopic niche space (INS), and the overlap of INS among fishes within the habitat using stable isotope analysis. Our analysis revealed that the M. rapidus exhibited a higher TL than M. yaluensis, with TL of 2.6 and 2.4, respectively. M. yaluensis exhibited a broad INS, significantly influencing the feeding characteristics of most fish. Conversely, M. rapidus showed a narrow INS and asymmetric feeding relationships with other species, in habitats with high competition levels. This feeding characteristics of M. rapidus indicate that the increase in competitors sharing the similar resources lead to a decrease in available resources and, consequently, is expected to result in a decrease in their density.

Stock-Index Invest Model Using News Big Data Opinion Mining (뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형)

  • Kim, Yoo-Sin;Kim, Nam-Gyu;Jeong, Seung-Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.143-156
    • /
    • 2012
  • People easily believe that news and stock index are closely related. They think that securing news before anyone else can help them forecast the stock prices and enjoy great profit, or perhaps capture the investment opportunity. However, it is no easy feat to determine to what extent the two are related, come up with the investment decision based on news, or find out such investment information is valid. If the significance of news and its impact on the stock market are analyzed, it will be possible to extract the information that can assist the investment decisions. The reality however is that the world is inundated with a massive wave of news in real time. And news is not patterned text. This study suggests the stock-index invest model based on "News Big Data" opinion mining that systematically collects, categorizes and analyzes the news and creates investment information. To verify the validity of the model, the relationship between the result of news opinion mining and stock-index was empirically analyzed by using statistics. Steps in the mining that converts news into information for investment decision making, are as follows. First, it is indexing information of news after getting a supply of news from news provider that collects news on real-time basis. Not only contents of news but also various information such as media, time, and news type and so on are collected and classified, and then are reworked as variable from which investment decision making can be inferred. Next step is to derive word that can judge polarity by separating text of news contents into morpheme, and to tag positive/negative polarity of each word by comparing this with sentimental dictionary. Third, positive/negative polarity of news is judged by using indexed classification information and scoring rule, and then final investment decision making information is derived according to daily scoring criteria. For this study, KOSPI index and its fluctuation range has been collected for 63 days that stock market was open during 3 months from July 2011 to September in Korea Exchange, and news data was collected by parsing 766 articles of economic news media M company on web page among article carried on stock information>news>main news of portal site Naver.com. In change of the price index of stocks during 3 months, it rose on 33 days and fell on 30 days, and news contents included 197 news articles before opening of stock market, 385 news articles during the session, 184 news articles after closing of market. Results of mining of collected news contents and of comparison with stock price showed that positive/negative opinion of news contents had significant relation with stock price, and change of the price index of stocks could be better explained in case of applying news opinion by deriving in positive/negative ratio instead of judging between simplified positive and negative opinion. And in order to check whether news had an effect on fluctuation of stock price, or at least went ahead of fluctuation of stock price, in the results that change of stock price was compared only with news happening before opening of stock market, it was verified to be statistically significant as well. In addition, because news contained various type and information such as social, economic, and overseas news, and corporate earnings, the present condition of type of industry, market outlook, the present condition of market and so on, it was expected that influence on stock market or significance of the relation would be different according to the type of news, and therefore each type of news was compared with fluctuation of stock price, and the results showed that market condition, outlook, and overseas news was the most useful to explain fluctuation of news. On the contrary, news about individual company was not statistically significant, but opinion mining value showed tendency opposite to stock price, and the reason can be thought to be the appearance of promotional and planned news for preventing stock price from falling. Finally, multiple regression analysis and logistic regression analysis was carried out in order to derive function of investment decision making on the basis of relation between positive/negative opinion of news and stock price, and the results showed that regression equation using variable of market conditions, outlook, and overseas news before opening of stock market was statistically significant, and classification accuracy of logistic regression accuracy results was shown to be 70.0% in rise of stock price, 78.8% in fall of stock price, and 74.6% on average. This study first analyzed relation between news and stock price through analyzing and quantifying sensitivity of atypical news contents by using opinion mining among big data analysis techniques, and furthermore, proposed and verified smart investment decision making model that could systematically carry out opinion mining and derive and support investment information. This shows that news can be used as variable to predict the price index of stocks for investment, and it is expected the model can be used as real investment support system if it is implemented as system and verified in the future.