• 제목/요약/키워드: Web Search Query

Search Result 198, Processing Time 0.029 seconds

k-Bitmap Clustering Method for XML Data based on Relational DBMS (관계형 DBMS 기반의 XML 데이터를 위한 k-비트맵 클러스터링 기법)

  • Lee, Bum-Suk;Hwang, Byung-Yeon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.6
    • /
    • pp.845-850
    • /
    • 2009
  • Use of XML data has been increased with growth of Web 2.0 environment. XML is recognized its advantages by using based technology of RSS or ATOM for transferring information from blogs and news feed. Bitmap clustering is a method to keep index in main memory based on Relational DBMS, and which performed better than the other XML indexing methods during the evaluation. Existing method generates too many clusters, and it causes deterioration of result of searching quality. This paper proposes k-Bitmap clustering method that can generate user defined k clusters to solve above-mentioned problem. The proposed method also keeps additional inverted index for searching excluded terms from representative bits of k-Bitmap. We performed evaluation and the result shows that the users can control the number of clusters. Also our method has high recall value in single term search, and it guarantees the searching result includes all related documents for its query with keeping two indices.

A meta-analysis on advantages of peripheral nerve block post-total knee arthroplasty

  • You, Di;Qin, Lu;Li, Kai;Li, Di;Zhao, Guoqing;Li, Longyun
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.271-287
    • /
    • 2021
  • Background: Postoperative pain management is crucial for patients undergoing total knee arthroplasty (TKA). There have been many recent clinical trials on post-TKA peripheral nerve block; however, they have reported inconsistent findings. In this meta-analysis, we aimed to comprehensively analyze studies on post-TKA analgesia to provide evidence-based clinical suggestions. Methods: We performed a computer-based query of PubMed, Embase, the Cochrane Library, and the Web of Science to retrieve related articles using neurothe following search terms: nerve block, nerve blockade, chemodenervation, chemical neurolysis, peridural block, epidural anesthesia, extradural anesthesia, total knee arthroplasty, total knee replacement, partial knee replacement, and others. After quality evaluation and data extraction, we analyzed the complications, visual analogue scale (VAS) score, patient satisfaction, perioperative opioid dosage, and rehabilitation indices. Evidence was rated using the Grading of Recommendations Assessment, Development, and Evaluation approach. Results: We included 16 randomized controlled trials involving 981 patients (511 receiving peripheral nerve block and 470 receiving epidural block) in the final analysis. Compared with an epidural block, a peripheral nerve block significantly reduced complications. There were no significant between-group differences in the postoperative VAS score, patient satisfaction, perioperative opioid dosage, and rehabilitation indices. Conclusions: Our findings demonstrate that the peripheral nerve block is superior to the epidural block in reducing complications without compromising the analgesic effect and patient satisfaction. Therefore, a peripheral nerve block is a safe and effective postoperative analgesic method with encouraging clinical prospects.

Hazelcast Vs. Ignite: Opportunities for Java Programmers

  • Maxim, Bartkov;Tetiana, Katkova;S., Kruglyk Vladyslav;G., Murtaziev Ernest;V., Kotova Olha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.406-412
    • /
    • 2022
  • Storing large amounts of data has always been a big problem from the beginning of computing history. Big Data has made huge advancements in improving business processes by finding the customers' needs using prediction models based on web and social media search. The main purpose of big data stream processing frameworks is to allow programmers to directly query the continuous stream without dealing with the lower-level mechanisms. In other words, programmers write the code to process streams using these runtime libraries (also called Stream Processing Engines). This is achieved by taking large volumes of data and analyzing them using Big Data frameworks. Streaming platforms are an emerging technology that deals with continuous streams of data. There are several streaming platforms of Big Data freely available on the Internet. However, selecting the most appropriate one is not easy for programmers. In this paper, we present a detailed description of two of the state-of-the-art and most popular streaming frameworks: Apache Ignite and Hazelcast. In addition, the performance of these frameworks is compared using selected attributes. Different types of databases are used in common to store the data. To process the data in real-time continuously, data streaming technologies are developed. With the development of today's large-scale distributed applications handling tons of data, these databases are not viable. Consequently, Big Data is introduced to store, process, and analyze data at a fast speed and also to deal with big users and data growth day by day.

Design and Implementation of a Similarity based Plant Disease Image Retrieval using Combined Descriptors and Inverse Proportion of Image Volumes (Descriptor 조합 및 동일 병명 이미지 수량 역비율 가중치를 적용한 유사도 기반 작물 질병 검색 기술 설계 및 구현)

  • Lim, Hye Jin;Jeong, Da Woon;Yoo, Seong Joon;Gu, Yeong Hyeon;Park, Jong Han
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.30-43
    • /
    • 2018
  • Many studies have been carried out to retrieve images using colors, shapes, and textures which are characteristic of images. In addition, there is also progress in research related to the disease images of the crop. In this paper, to be a help to identify the disease occurred in crops grown in the agricultural field, we propose a similarity-based crop disease search system using the diseases image of horticulture crops. The proposed system improves the similarity retrieval performance compared to existing ones through the combination descriptor without using a single descriptor and applied the weight based calculation method to provide users with highly readable similarity search results. In this paper, a total of 13 Descriptors were used in combination. We used to retrieval of disease of six crops using a combination Descriptor, and a combination Descriptor with the highest average accuracy for each crop was selected as a combination Descriptor for the crop. The retrieved result were expressed as a percentage using the calculation method based on the ratio of disease names, and calculation method based on the weight. The calculation method based on the ratio of disease name has a problem in that number of images used in the query image and similarity search was output in a first order. To solve this problem, we used a calculation method based on weight. We applied the test image of each disease name to each of the two calculation methods to measure the classification performance of the retrieval results. We compared averages of retrieval performance for two calculation method for each crop. In cases of red pepper and apple, the performance of the calculation method based on the ratio of disease names was about 11.89% on average higher than that of the calculation method based on weight, respectively. In cases of chrysanthemum, strawberry, pear, and grape, the performance of the calculation method based on the weight was about 20.34% on average higher than that of the calculation method based on the ratio of disease names, respectively. In addition, the system proposed in this paper, UI/UX was configured conveniently via the feedback of actual users. Each system screen has a title and a description of the screen at the top, and was configured to display a user to conveniently view the information on the disease. The information of the disease searched based on the calculation method proposed above displays images and disease names of similar diseases. The system's environment is implemented for use with a web browser based on a pc environment and a web browser based on a mobile device environment.

Design and Implementation of a Question Management System based on a Concept Lattice (개념 망 구조를 기반으로 한 문항 관리 시스템의 설계 및 구현)

  • Kim, Mi-Hye
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.412-425
    • /
    • 2008
  • One of the important elements for improving academic achievement of learners in education through e-learning is to support learners to study by finding questions they want with providing various evaluation questions. However, most of question retrieval systems usually depend on keyword search based on only a syntactical analysis and/or a hierarchical browsing system classified by the topics of subjects. In such a system it is not easy to find integrative questions associated with each other. In order to improve this problem, in this paper we proposed a question management and retrieval system which allows users to easily manage questions and also to effectively find questions for study on the Web. Then, we implemented a system that gives to access questions for the domain of C language programming. The system makes it possible to easily search questions related to not only a single theme but also questions integrated by interrelationship between topics and questions. This is done by supporting to be able to retrieve questions according to conceptual interrelationships between questions from user query. Consequently, it is expected that the proposed system will provide learners to understand the basic theories and the concepts of the subjects as well as to improve the ability of comprehensive knowledge utilization and problem-solving.

A Study on the Intellectual Structure of Metadata Research by Using Co-word Analysis (동시출현단어 분석에 기반한 메타데이터 분야의 지적구조에 관한 연구)

  • Choi, Ye-Jin;Chung, Yeon-Kyoung
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.3
    • /
    • pp.63-83
    • /
    • 2016
  • As the usage of information resources produced in various media and forms has been increased, the importance of metadata as a tool of information organization to describe the information resources becomes increasingly crucial. The purposes of this study are to analyze and to demonstrate the intellectual structure in the field of metadata through co-word analysis. The data set was collected from the journals which were registered in the Core collection of Web of Science citation database during the period from January 1, 1998 to July 8, 2016. Among them, the bibliographic data from 727 journals was collected using Topic category search with the query word 'metadata'. From 727 journal articles, 410 journals with author keywords were selected and after data preprocessing, 1,137 author keywords were extracted. Finally, a total of 37 final keywords which had more than 6 frequency were selected for analysis. In order to demonstrate the intellectual structure of metadata field, network analysis was conducted. As a result, 2 domains and 9 clusters were derived, and intellectual relations among keywords from metadata field were visualized, and proposed keywords with high global centrality and local centrality. Six clusters from cluster analysis were shown in the map of multidimensional scaling, and the knowledge structure was proposed based on the correlations among each keywords. The results of this study are expected to help to understand the intellectual structure of metadata field through visualization and to guide directions in new approaches of metadata related studies.

The e-Business Component Construction based on Distributed Component Specification (분산 컴포넌트 명세를 통한 e-비즈니스 컴포넌트 구축)

  • Kim, Haeng-Gon;Choe, Ha-Jeong;Han, Eun-Ju
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.705-714
    • /
    • 2001
  • The computing systems of today expanded business trade and distributed business process Internet. More and more systems are developed from components with exactly reusability, independency, and portability. Component based development is focused on advanced concepts rater than passive manipulation or source code in class library. The primary component construction in CBD. However, lead to an additional cost for reconstructing the new component with CBD model. It also difficult to serve component information with rapidly and exactly, which normalization model are not established, frequency user logging in Web caused overload. A lot of difficult issues and aspects of Component Based Development have to be investigated to develop good component-based products. There is no established normalization model which will guarantee a proper treatment of components. This paper elaborates on some of those aspects of web application to adapt user requirement with exactly and rapidly. Distributed components in this paper are used in the most tiny size on network and suggest the network-addressable interface based on business domain. We also discuss the internal and external specifications for grasping component internal and external relations of user requirements to be analyzed. The specifications are stored on Servlets after dividing the information between session and entity as an EJB (Enterprise JavaBeans) that are reusable unit size in business domain. The reusable units are used in business component through query to get business component. As a major contribution, we propose a systems model for registration, auto-arrange, search, test, and download component, which covers component reusability and component customization.

  • PDF

A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model (키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법)

  • Cho, Won-Chin;Rho, Sang-Kyu;Yun, Ji-Young Agnes;Park, Jin-Soo
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.