Journal of the Korean Society for information Management
/
v.26
no.1
/
pp.305-320
/
2009
The news pages provided through the web contain unnecessary information. This causes low performance and inefficiency of the news processing system. In this study, news content extraction methods, which are based on sentence identification and block-level tags news web pages, was suggested. To obtain optimal performance, combinations of these methods were applied. The results showed good performance when using an extraction method which applied the sentence identification and eliminated hyperlink text from web pages. Moreover, this method showed better results when combined with the extraction method which used block-level. Extraction methods, which used sentence identification, were effective for raising the extraction recall ratio.
Journal of the Korea Institute of Information Security & Cryptology
/
v.19
no.6
/
pp.121-134
/
2009
Consumer-centric marketing business is surely one of the most successful emerging business but it poses a threat to personal privacy. Between the service provider and the user there are many contrary issues to each other. The enterprise asserts that to abuse the privacy data which is anonymous there is not a problem. The individual only will not be able to willingly submit the problem which is latent. Web traffic analysis technology itself doesn't create issues, but this technology when used on data of personal nature might cause concerns. The most criticized ethical issue involving web traffic analysis is the invasion of privacy. So we need to inspect how many and what kind of personal informations being used and if there is any illegal treatment of personal information. In this paper, we inspect the operation of consumer-centric marketing tools such as web log analysis solutions and data gathering services with web browser toolbar. Also we inspect Microsoft explorer-based toolbar application which records and analyzes personal web browsing pattern through reverse engineering technology. Finally, this identified and explored security and privacy requirement issues to develop more reliable solutions. This study is very important for the balanced development with personal privacy protection and web traffic analysis industry.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.334-338
/
2010
컴퓨터 기술의 발달 및 웹의 확산으로 인해 개인이 얻을 수 있는 정보의 양이 증가되었지만, 이로 인해 필요한 관련 정보를 탐색하는 것과 다량의 정보로부터 지식을 창출한다는 것이 어렵게 되었고, 고객 또는 사용자에 대한 학습 과정 및 정보의 개인화 등의 문제가 대두되게 되었다. 이러한 문제들을 해소하기 위해 웹으로부터 정보를 얻을 수 있는 자동화된 툴이 필요하게 되었고, 얻은 정보를 이용하여 웹 사용자들의 패턴을 식별할 수 있는 방법 또한 필요하게 되었다. 이러한 관심은 데이터 마이닝을 온라인에서 적용하고자 하는 노력으로 이어졌고, 현재 데이터 마이닝 기술을 온라인에 적용한 웹 마이닝 기술을 사용하고 있다. 웹 마이닝은 웹의 방대한 양의 자료 및 구조를 좀 더 유용하고, 효율적인 정보로 가공하여 사용자에게 제공할 수 있도록 도와주는 기술이다. 본 논문에서는 웹 마이닝의 전반적인 개념과 분류를 소개한다. 또한, 웹 마이닝의 분류 중 웹 구조 마이닝에 초점을 맞추어 개념 및 웹 구조 마이닝의 대표적인 알고리듬을 소개한다.
Objectives : The purpose of this study was to analyze representative topics and topic trends of papers in Korean Society and Health Service Management(KSHSM) Journal. Methods : We collected English abstracts and key words of 516 papers in KSHSM Journal from 2007 to 2017. We utilized Python web scraping programs for collecting the papers from Korea Citation Index web site, and RStudio software for topic analysis based on latent Dirichlet allocation algorithm. Results : 9 topics were decided as the best number of topics by perplexity analysis and the resultant 9 topics for all the papers were extracted using Gibbs sampling method. We could refine 9 topics to 5 topics by deep consideration of meanings of each topics and analysis of intertopic distance map. In topic trends analysis from 2007 to 2017, we could verify 'Health Management' and 'Hospital Service' were two representative topics, and 'Hospital Service' was prevalent topic by 2011, but the ratio of the two topics became to be similar from 2012. Conclusions : We discovered 5 topics were the best number of topics and the topic trends reflected the main issues of KSHSM Journal, such as name revision of the society in 2012.
Social media is becoming more and more important in social movements. This study, adopting the web mining approach, attempts to investigate how social media, Facebook in particular, functioned in the "May 25 Protest" and the "May 27 Protest", two movements which broke out in Macao on 25 and 27 May 2014, respectively, against the Retirement Package Bill. In the two protests, Macao residents deployed Facebook to share information and motivated people's participation. Twelve events (181,106 people invited) and 36 groups/pages (41,266 members) related on Facebook were examined. Results showed that the information flow on Facebook fluctuated in accordance with the event development in reality. Multiple patterns of manifestation, such as video of adopted news or songs, designed profile (protest icon), original ironic pictures, self-organized clubs by undergraduates and white T-shirts as a symbol, among others, appeared online and interacted with offline actions. It was also found that social media assisted the information diffusion and provided persuasive reasons for netizens to join the movement. Social media helped to expand movement influence in providing a platform for diversified performances for actions taken in a protest, which could express and develop core and consistent movement repertoire.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.2
/
pp.373-378
/
2023
Untypical symptoms and lack of diagnostic records make it difficult for even medical specialists to detect rare diseases. Thus, it takes a lot of time and money from the onset of symptoms to an accurate diagnosis, which seriously results in physical, mental, and economic pressure on patients. In this paper, we propose and implement an early detection assistance system for rare diseases using web crawling and text mining, which can suggest the names of suspected rare diseases so that medical staffs can easily recall the disease names and make a final diagnosis of the rare diseases.
Clickstream is the information which demonstrate users' path through web sites. Analysis of clickstream shows how web sites are navigated and used by users. Clickstream of online web sites contains effective information of web marketing and to offers usefully personalized services to users, and helps us understand how users find web sites, what products they see, and what products they purchase. In this paper, we present an extended web log system that add to module of collection of clickstream to understand users' behavior patterns In web sites. This system offers the users clickstream information to database which can then analyze it with ease. Using ADO technology in store of database constructs extended web log server system. The process of making clickstreaming into database can facilitate analysis of various user patterns and generates aggregate profiles to offer personalized web service. In particular, our results indicate that by using the users' clickstream. We can achieve effective personalization of web sites.
Recently. many researches on the personalization of a web-site have been actively made. The web personalization predicts the sets of the most interesting URLs for each user through data mining approaches such as clustering techniques. Most existing methods using clustering techniques represented the web transactions as bit vectors that represent whether users visit a certain WRL or not to cluster web transactions. The similarity of the web transactions was decided according to the match degree of bit vectors. However, since the existing methods consider only whether users visit a certain URL or not, users' interestingness on the URL is excluded from clustering web transactions. That is, it is possible that the web transactions with different visit proposes or inclinations are classified into the same group. In this paper. we propose an enhanced transaction modeling with interestingness weight to solve such problems and a new similarity measuring method that exploits the proposed transaction modeling. It is shown through performance evaluation that our similarity measuring method improves the accuracy of the web transaction clustering over the existing method.
Journal of the Korean Data and Information Science Society
/
v.20
no.2
/
pp.425-433
/
2009
Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. We need a data mining tool to explore a lot of information. There are many data mining tools or solutions; E-Miner, Clementine, WEKA, and R. Almost of them are were focused on diversity and general purpose, and they are not useful for laymen. In this paper we design and implement a web-based data mining tool using PHP and WEKA. This system is easy to interpret results and so general users are able to handle. We implement Apriori algorithm of association rule, K-means algorithm of cluster analysis, and J48 algorithm of decision tree.
Kim, Kyu-Ho;Kim, Hee-Min;Lee, Ki-Young;Lim, Myung-Jae;Kim, Jeong-Lae
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.12
no.1
/
pp.225-230
/
2012
The opinion mining is that to use the existing data mining technology also uploaded blog to web, to use product comment, the opinion mining can extract the author's opinion therefore it not judge text's subject, only judge subject's emotion. In this paper, published opinion mining algorithms and the text using speech recognition API for non-voice data to judge the emotions suggested. The system is open and the Subject associated with Google Voice Recognition API sunwihwa algorithm, the algorithm determines the polarity through improved design, based on this interview, speech recognition, which implements the model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.