• Title/Summary/Keyword: Web Log

Search Result 296, Processing Time 0.028 seconds

Image Log Files of the URL Page of Web Server (Web Server에서 Web URL Page의 Image Log File)

  • Yoo, Seung-Hee;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.243-244
    • /
    • 2007
  • 웹 서버에서 로그파일은 웹 서버에 대한 접속정보를 저장한다. 이 정보를 분석하면 웹 서비스를 하는데 있어서 서비스의 질을 높이는데 좋은 참고자료가 될 뿐 아니라 웹 서버에 이상이 생겼을 경우 발생한 오류를 조기에 발견하는 데에도 사용되는 중요한 자료이다. 현재 이러한 로그파일은 텍스트 파일로 저장이 되어있으며 오랜 시간이 지나 그 웹 페이지가 삭제되었을 경우 로그파일에 기록된 그 시각의 웹 페이지를 찾아보기가 어렵다. 본 연구에서는 로그파일에 기록된 그 시각의 웹 페이지의 이미지를 저장하는 방법으로 이러한 단점을 보안하고 오랜 시간이 지난 후에도 그 웹 페이지를 볼 수 있는 방법을 제안한다. 이 아이디어가 구현되어 실현되면 또한 Digital Forensic으로써 범죄 수사에도 많은 도움이 될 뿐만 아니라 휴대전화로 풀 인터넷 브라우징이 가능한 풀브라우저에도 적용될 수 있다.

  • PDF

Proposal of UI Test Automatic Design Model Through Web Log Analysis (웹로그 분석을 통한 UI테스트 자동화 설계 모델 제안)

  • Choi, Ji-Hoon;Kim, Jae-Woong;Lee, Youn-Yeoul;Park, Seong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.249-251
    • /
    • 2021
  • 본 논문에서는 WEB대상으로 UI테스트를 최초 설계할 때, 웹로그를 분석하여 사용자들의 패턴을 파악하고 자동으로 테스트 시나리오와 케이스를 설계하여 제공하는 시스템을 제안한다. 이 시스템은 메세지큐를 활용하여 로그 데이터를 효율적으로 수집할 수 있고, 분석 시스템과 사용자들이 사용하는 웹서버를 분리하여 로그분석으로 인한 시스템 과부하 현상을 예방 할 수 있다. 또한 로그분석을 통해 추출된 데이터를 통해 사용자들이 실제로 자주 사용하거나 사용했던 사용 경로를 이용하여 자동으로 테스트 시나리오와 테스트 케이스에 대한 자료들을 접할 수 있어 테스트 분석, 설계 과정에서의 소요되는 시간이 감축되는 것을 기대할 수 있으며, 실제 사용자들이 자주 이용하는 패턴으로 테스트 대상을 정할 수 있기 때문에 후에 테스트를 통한 결함이 조치가 된다면 사용자들이 결함 경험을 줄일 수 있을 것이라 기대한다.

  • PDF

Log Analysis System Design using RTMA

  • Park, Hee-Chang;Myung, Ho-Min
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.225-236
    • /
    • 2004
  • Every web server comprises a repository of all actions and events that occur on the server. Server logs can be used to quantify user traffic. Intelligent analysis of this data provides a statistical baseline that can be used to determine server load, failed requests and other events that throw light on site usage patterns. This information provides valuable leads on marketing and site management activities. In this paper, we propose a method of design for log analysis system using RTMA(realtime monitoring and analysis) technique.

  • PDF

Distributed FTP Server for Log Mining System on ACE (분산 FTP 서버의 ACE 기반 로그 마이닝 시스템)

  • Min, Su-Hong;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.465-468
    • /
    • 2002
  • Today large corporations are constructing distributed server environment. Many corporations are respectively operating Web server, FTP server, Mail server and DB server on heterogeneous operation. However, there is the problem that a manager must manage each server individually. In this paper, we present distributed FTP server for log mining system on ACE. Proposed log mining system is based upon ACE (Adaptive Communication Environment) framework and data mining techniques. This system provides a united operation with distributed FTP server.

  • PDF

Fuzzy category based transaction analysis for web usage mining (웹 사용 마이닝을 위한 퍼지 카테고리 기반의 트랜잭션 분석 기법)

  • 이시헌;이지형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.341-344
    • /
    • 2004
  • 웹 사용 마이닝(Web usage mining)은 웹 로그 파일(web log file)이나 웹 사용 데이터(Web usage data)에서 의미 있는 정보를 찾아내는 연구 분야이다. 웹 사용 마이닝에서 일반적으로 많이 사용하는 웹 로그 파일은 사용자들이 참조한 페이지의 단순한 리스트들이다. 따라서 단순히 웹 로그 파일만을 이용하는 방법만으로는 사용자가 참조했던 페이지의 내용을 반영하여 분석하는데에는 한계가 있다. 이러한 점을 개선하고자 본 논문에서는 페이지 위주가 아닌 웹 페이지가 포함하고 있는 내용(아이템)을 고려하는 새로운 퍼지 카테고리 기반의 웹 사용 마이닝 기법을 제시한다. 또한 사용자를 잘 파악하기 위해서 시간에 따라 관심의 변화를 파악하는 방법을 제시한다.

  • PDF

A Web Recommendation System using Grid based Support Vector Machines

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.91-95
    • /
    • 2007
  • Main goal of web recommendation system is to study how user behavior on a website can be predicted by analyzing web log data which contain the visited web pages. Many researches of the web recommendation system have been studied. To construct web recommendation system, web mining is needed. Especially, web usage analysis of web mining is a tool for recommendation model. In this paper, we propose web recommendation system using grid based support vector machines for improvement of web recommendation system. To verify the performance of our system, we make experiments using the data set from our web server.

Web Structure Mining by Extracting Hyperlinks from Web Documents and Access Logs (웹 문서와 접근로그의 하이퍼링크 추출을 통한 웹 구조 마이닝)

  • Lee, Seong-Dae;Park, Hyu-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2059-2071
    • /
    • 2007
  • If the correct structure of Web site is known, the information provider can discover users# behavior patterns and characteristics for better services, and users can find useful information easily and exactly. There may be some difficulties, however, to extract the exact structure of Web site because documents one the Web tend to be changed frequently. This paper proposes new method for extracting such Web structure automatically. The method consists of two phases. The first phase extracts the hyperlinks among Web documents, and then constructs a directed graph to represent the structure of Web site. It has limitations, however, to discover the hyperlinks in Flash and Java Applet. The second phase is to find such hidden hyperlinks by using Web access log. It fist extracts the click streams from the access log, and then extract the hidden hyperlinks by comparing with the directed graph. Several experiments have been conducted to evaluate the proposed method.

The Continuous Service Usage Intention in the Web Analytics Services

  • Park, Jae-Seong;Jeong, Gyeong-Ho;Kim, Jae-Jeon;Jo, Geon;Go, Jun
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.301-306
    • /
    • 2008
  • The World Wide Web (WWW) has continued to grow at very rapid speed in both the sheer volume of traffic and size and the complexity of Web sites. Web Analytics Industry also has been growing rapidly. Web Analytics is to analyze web log files to discover accessing patterns of web pages. In this paper, we identify factors which can affect the continuous usage intention of a firm using services in web analytics services and empirically validate the relationships between the identified factors. For this purpose, we analyze 174 Korea firms. The analysis results show that the satisfaction is significantly associated with service quality and switching cost and the service usage period is not significantly associated with continuous service usage intention. We measure the service quality using SERVQUAL. It turn out that two dimensions of SERVQUAL, reliability and empathy are significantly associated with satisfaction, but another dimension of SERVQUAL, responsibility, is not. Finally, satisfaction is significantly associated with continuous service usage intention.

  • PDF

Merchandise Management Using Web Mining in Business To Customer Electronic Commerce (기업과 소비자간 전자상거래에서의 웹 마이닝을 이용한 상품관리)

  • 임광혁;홍한국;박상찬
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.97-121
    • /
    • 2001
  • Until now, we have believed that one of advantages of cyber market is that it can virtually display and sell goods because it does not necessary maintain expensive physical shops and inventories. But, in a highly competitive environment, business model that does away with goods in stock must be modified. As we know in the case of AMAZON, leading companies already consider merchandise management as a critical success factor in their business model. That is, a solution to compete against one's competitors in a highly competitive environment is merchandise management as in the traditional retail market. Cyber market has not only past sales data but also web log data before sales data that contains information of path that customer search and purchase on cyber market as compared with traditional retail market. So if we can correctly analyze the characteristics of before sales patterns using web log data, we can better prepare for the potential customers and effectively manage inventories and merchandises. We introduce a systematic analysis method to extract useful data for merchandise management - demand forecasting, evaluating & selecting - using web mining that is the application of data mining techniques to the World Wide Web. We use various techniques of web mining such as clustering, mining association rules, mining sequential patterns.

  • PDF

Web Log Analysis Using Support Vector Regression

  • Jun, Sung-Hae;Lim, Min-Taik;Jorn, Hong-Seok;Hwang, Jin-Soo;Park, Seong-Yong;Kim, Jee-Yun;Oh, Kyung-Whan
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.61-77
    • /
    • 2003
  • Due to the wide expansion of the internet, people can freely get information what they want with lesser efforts. However without adequate forms or rules to follow, it is getting more and more difficult to get necessary information. Because of seemingly chaotic status of the current web environment, it is sometimes called "Dizzy web" The user should wander from page to page to get necessary information. Therefore we need to construct system which properly recommends appropriate information for general user. The representative research field for this system is called Recommendation System(RS), The collaborative recommendation system is one of the RS. It was known to perform better than the other systems. When we perform the web user modeling or other web-mining tasks, the continuous feedback data is very important and frequently used. In this paper, we propose a collaborative recommendation system which can deal with the continuous feedback data and tried to construct the web page prediction system. We use a sojourn time of a user as continuous feedback data and combine the traditional model-based algorithm framework with the Support Vector Regression technique. In our experiments, we show the accuracy of our system and the computing time of page prediction compared with Pearson's correlation algorithm.algorithm.