• Title/Summary/Keyword: Weathering Test

Search Result 246, Processing Time 0.032 seconds

Abrief study on the corrosion of bronze roofing tile (납(Pb)도금(동개와)의 부식 연구)

  • Kim, Sa-Dug
    • 보존과학연구
    • /
    • s.15
    • /
    • pp.52-58
    • /
    • 1994
  • To protect corrosion of bronze roofing tile for Choson Royal Historic Museum, lead coating on tile was performed by electroplating method with thickness of $35\mum$. Lead coated tile samples were inverstigated what corrosion products were formed with color changes on them by testing Accelerated Weathering. No sulfides were formed on samples contacting with 300ppm sulfur dioxide and any color changes were not found. In Accelerated Weathering test, White hydrocerussite, basic lead carbonate($2PbCO_3Pb(OH)_2$) having protective structure made of compact adhering crystals.

  • PDF

A Study on the Deterioration Prediction Method of Concrete Structures Subjected to Cyclic Freezing and Thawing (동결융해 작용을 받는 콘크리트 구조물의 내구성능 저하 예측 방법에 관한 연구)

  • Koh, Kyung-Taeg;Kim, Do-Gyeum;Cho, Myung-Sung;Son, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.131-140
    • /
    • 2001
  • In general, the deterioration induced by the freezing and thawing cyclic in concrete structures often leads to the reduction in concrete durability by the cracking or surface spalling. If it can prediction of concrete deterioration subjected to cyclic freezing and thawing, we can rationally do the design of mix proportion in view of concrete durability and the maintenance management of concrete structures. Therefore in this study a prediction method of deterioration for concrete structures subjected to the irregular freezing and thawing is proposed from the results of accelerated laboratory freezing and thawing test using the constant temperature condition and the in-situ weathering data. Furthermore, to accurately predict the concrete deterioration, a method of modification for the effect of hydration increasing during rapid freezing and thawing test is investigated.

  • PDF

Petro-mineralogical and Solubility Characterization in Soluble Rocks (용해성 암석의 용식 진전에 대한 암석-광물학적 특성 연구)

  • 정의진;윤운상;여상진;김정환;이근병;노영욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.253-260
    • /
    • 2002
  • Chemical weathering processes related with mineralogical characters and ground water condition are very essential engineering problems in soluble rock masses. Detailed geological mapping were performed and 8 samples were collected from the 2 formations including various rock faces to deduce the possibility of the limestone cavity formation and their mechanism. Petrological descriptions and various petro-mineralogical experiments such as XRD analysis, clay mineral analysis, absorptivity test, impurity analysis were conducted to evaluate the cavity making processes. Laboratory solubility test for rock specimen were also carried out under the strong acid (pH=1) condition. From the experimental data and geological mapping data, it is found that the formation of limestone cavities in limestones are strongly related with geological structures such as beddings, cleavages and the contents of impurities rather than CaCO$_3$contents. In case of dolomites, rock textures, grain size, amounts and types of clay minerals as well as geological structures are major controlling factors of cavity forming processes

  • PDF

Monitoring the Change of Physical Properties of Traditional Dancheong Pigments (전통 단청안료 표면의 물리적 특성 변화 모니터링)

  • Kim, Ji Sun;Jeong, Hye Young;Byun, Doo-Jin;Yoo, Min Jae;Kim, Myoung Nam;Lee, Sun Myung
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.549-561
    • /
    • 2020
  • This study aimed to assess the performance and life of nine natural mineral dancheong pigments: Seokganju, Jinsa, Hwangto, Jahwang, Wunghwang, Seokrok, Noerok, Seokcheong, and Baekto. The design of the accelerated weathering test considered the domestic climate characteristics and the location of Dancheong. Outdoor weathering tests were conducted at the Research Institute in Daejeon and the Sungnyemun Gate in Seoul to confirm the field reproducibility of the accelerated weathering test. Monitoring of the physical changes in pigments through accelerated and outdoor weathering tests are based on ultraviolet exposure dose. Despite small cracks at the beginning of the tests, the monitoring showed that Seokganju and Baekto had no marked physical changes, but the surface cracks of Jinsa and Seorok continue to expand. Hwangto and Noerok were marked with water or were resin stained, and the particles of Jahwang, Wunghwang, and Seokcheong had lost their luster. Despite the absolute difference in color change in each test, the final chromaticity change patterns of pigments were similar in that the color difference between Baekto and Noerok was below five, and Jina was above 28. The physical and surface color pigment changes were more concentrated in outdoor weathering tests than in accelerated tests, and the Seoul site was more intense than the Daejeon site. This is because outdoor weathering tests are exposed to severe variations of temperature and moisture or deposition of dust particles and, in the case of Seoul, the site is more exposed to the external environment than the Daejeon site.

Engineering Characteristics of the Sedimentary Rocks on Compressive Strength and Weathering Grade (압축강도와 풍화도에 관련된 퇴적암의 공학적 특성)

  • 이영휘;김영준;박준규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.5-17
    • /
    • 2000
  • The physical and mechanical properties of the sedimentary rocks deposited in Taegu and Kyongbuk region have been measured in the laboratory and at the field. Four kinds of rocks such as the shale, the mudstone, the siltstone and the sandstone were the object of this study. In sedimentary rock joint, bedding made it impossible to extract cores for uniaxial compressive test. Some correlations between the uniaxial compressive strength and the other characteristic values such as Point load index, Schmidt hammer rebound, Brazilian strength, P-wave velocity and Absorption ratio are made. The chemical and mineral compositions are also investigated by the XRF and XRD analysis. In addition, the weathering grade of rocks are classified by the quantitative indices of Point load index, Schmidt hammer rebound and Absorption ratio.

  • PDF

Characteristics of Fancy Veneer Plywood Floor using Green Tea Leaves Powder (녹차잎분말을 사용한 마루판의 특성)

  • Kang, Seog-Goo;Lee, Hwa-Hyoung
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.4
    • /
    • pp.284-292
    • /
    • 2010
  • This research was carried out to examine the properties of fancy cherry veneer overlaid on the PF resin bonded Meranti plywood floor, which 2.5% green tea leaf powder was applied in the UV varnishes and the adhesives for scavenging the volatile organic compounds. The results were as follows: 1. The various properties of the treated samples, such as density, moisture content, thickness swelling, bending strength(MOR), adhesion shear strength, surface abrasion, curling, cyclic delamination test with boiling water, boiling property, cold-resistance and heat resistance, acid resistance and alkali resistance, and anti-contamination property showed no significant difference between the properties of the control samples. 2.5% green tea leaf powder treated floor gave a little better results than the control for surface scratch test. 2. In case of QUV and weathering test, no difference between the treated sample and control was found. 3. The floor was discolored by adding 10% green tea leaf powder to UV coating, and the floor was also discolored to light green during by the soaking test. The color of floor was not changed up to 5% addition level.

  • PDF

Weathering and Degradation Assessment of Rock Properties at the West Stone Pagoda, Gameunsaji Temple Site, Korea

  • Lee, Chan Hee;Lee, Myeong Seong;Kim, Jiyoung
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • The West Stone Pagoda at Gameunsaji Temple Site constructed in the 7th century is mainly composed of dark grey dacitic tuff bearing small numerous dioritic xenoliths. These xenoliths resulted in small holes due to differential weathering process from the host rocks. Physical strength of the pagoda was decreased due to weathering and damage caused by petrological, biological and coastal environmental factors. The southeastern part of the pagoda was extremely deteriorated that the rock surface showed exfoliation, fracture, open cavity, granular decomposition of minerals and salt crystallization by seawater spray from the eastern coast. The stone blocks were intersected by numerous cracks and contaminated by subsequent material such as cement mortar and iron plates. Also, the pagoda was colonized by algae, fungi, lichen and bryophytes on the roof rock surface and the gaps between the blocks. As a result of ultrasonic test, the rock materials fell under Highly Weathered Grade (HW) or Completely Weathered Grade (CW). Thus, conservational intervention is essentially required to prevent further weakening of the rock materials.

Salt Weathering Characteristics and Mechanism Interpretation of the Five-Storied Stone Pagoda in Tapri-ri, Uiseong (의성 탑리리 오층석탑의 염풍화 특성과 메커니즘 해석)

  • Lee, Mi Hey;Lee, Myeong Seong;Lee, Jae Man;Chun, Yu Gun
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.57-67
    • /
    • 2012
  • The Uiseong Tapriri Five-Storied stone pagoda has occurred exfoliation, granular disintegration and discoloration by physical and chemical weathering factors with the major deterioration occurring due to efflorescence by salt. According to the results of SEM-EDS and X-ray diffraction analysis, salts consists of gypsum, taranakite. Artificial salt weathering tests were carried out using the same type of rocks as those in the stone pagoda. The test results showed that efflorescence occurred on the surface of the rock, and that exfoliation and granular disintegration occurred inside the rock due to salt crystallization.

  • PDF