• Title/Summary/Keyword: Weather reaction

Search Result 52, Processing Time 0.027 seconds

Properties of Iron Powder and Activated Carbon mixed Matrix for the Improvement of Cold Weather Concrete (한중콘크리트 개선을 위한 철가루와 활성탄 혼입 경화체 기초연구)

  • Kim, Won-Jong;Kim, Won-Sik;Kim, Gyu-Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.175-176
    • /
    • 2022
  • By studying the characteristics of matrix insulated through heat generated through oxidation of iron powder, the basic research results on the possibility of buffering and applicability of Cold weather concrete as a curing method are presented. In order to prevent freezing due to a sharp decrease in temperature in the initial stage of curing, iron powder (Fe), powder activated carbon, which is a small amount of porous carbonaceous adsorbent, and salt (NaCl) as an oxidizing agent are replaced with iron powder admixture. As the curing temperature increases, the strength tends to increase, and when replacing the admixture at the same curing temperature, the strength slightly decreases. This is determined as a result of generating iron oxide through an oxidation reaction of iron powder, activated carbon, and NaCl generating a large amount of pores in the matrix. In addition, the internal temperature tends to increase as the mixing substitution rate increases, and it is judged that the oxidation heat of the iron powder mixture affects the increase of the internal temperature during curing. The higher the replacement rate of the iron powder mixture, the slightly lower the strength, but it is determined that freezing and melting that may occur in the early stage of curing can be prevented due to an increase in the initial internal temperature.

  • PDF

Evaluation of Hydration Heat Characteristics of Strontium Based Hydration Heat Reducer Addition on Concrete in Hot Weather Condition (서중환경에서 스트론튬계 수화열저감재를 사용한 콘크리트의 수화발열특성 평가)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Kil, Bae-Su;Koyama, Tomoyuki;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.189-196
    • /
    • 2020
  • When concrete member become large like in high rise buildings, hydration heat makes temperature difference inside and outside and cause cracks. The method of using latent heat material as heat reducer could be more accessible, usable and efficient than other methods. Therefore, many studies using PCM as heat reducer are being conducted. Since heat reducer have different reacting temperature, they may be affected by environmental factors like ambient and concrete mixing temperature but studies issuing this are insignificant. Therefore, this paper attempt to evaluate the hydration heat characteristics and quality of concrete using strontium-based PCM under hot weather conditions. As a result, when the strontium-based hydration heat reducer was mixed 3wt.% and 5wt.% in hot weather condition, hydration heat speed and heating rate could be reduced by 8%, 21%, and 75, 85 minutes compared to OPC, respectively. This is considered to be the phase change reaction is relatively promoted when the temperature is high and cause improve performance than room condition result. Later, comparing the efficiency of other types of P.C.M in hot weather condition, and conduct detailed reviews on the strength development in long-term age.

Curing Reaction and Physical Properties of Acrylic High-Solid Coatings (아크릴계 하이솔리드 도료의 경화반응과 도막물성)

  • Park, Hyong-Jin;Kim, Sung-Rae;Jung, Choong-Ho;An, Chong-Il;Park, Hong-Soo;Kim, Tae-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.261-272
    • /
    • 2001
  • An ACR/HMMM film was prepared by blending high-solid ACR with curing agent, hexamethoxymethyl melamine (HMMM). An active curing reaction was observed at $170^{\circ}C$. The dynamic viscoelastic $T_{g}$ of the final film increased with the static viscoelastic $T_{g}$ of the film. The log damp value, which means a viscoelastic ratio, decreased with the increase in the curing temperature of the film. Physical properties of the films were within a suitable range for films, and by an accelerated weathering resistance test the films were proved weather resistible ones.

The Effect of Replacement Ratio of Mineral Admixtures and Curing Condition on Compressive Strength of Hot Weather Concrete (혼화재 치환율 및 양생조건이 서중콘크리트의 압축강도에 미치는 영향)

  • Kong, Tae-Woong;Lee, Soo-Hyung;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.629-632
    • /
    • 2008
  • As concrete is a material which is subject to wide quality fluctuations by temperature, grip of seasonal feature and maintenance of ambient temperature and humidity to secure the quality required after casting concrete are able to keep away from harmful effects. In case of summer, a high temperature has caused rapid hydration reaction of cement in early age, which has caused to decrease strength by autogenous shrinkage. Therefore we need to consider a countermeasure for decrease in the hydration heat of hot-weather concrete, according to minimize water and cement content and use mineral admixtures In this experimental research, the compressive strength development for replacement ratio of mineral admixtures, curing temperature and methods of concrete was investigated to confirm the effects of mixture design and curing condition on compressive strength of concrete.

  • PDF

Practical Application of Fine Particle Cement for Shotcrete in Cold Weather (동절기 Shotcrete 시공을 위한 미립자 시멘트의 활용)

  • Kim, Kyoung-Min;Hwang, In-Sung;Kim, Sung-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.997-1000
    • /
    • 2008
  • Strength development of concrete subjected to cold weather is generally delayed due to its low temperature. In case of soil nailing method, it is necessary to apply the shotcrete. However, the shotcrete placement under low temperature experiences retardation of strength development due to delayed hydration reaction. Therefore, in this paper, the use of fine particle cement which is produced through particle classification in cement manufacturing process, is discussed to enhance the strength development of the shotcrete under low temperature. According to the results, the concrete containing 100% of fine particle cement had excellent strength development even at $-9^{\circ}C$ of temperature and at 5days, it reached design strength with PE film curing. It is thought that more than 70% of fine particle cement can secure required strength of the shotcrete even at low temperature condition.

  • PDF

A Study on Setting Time and Early Strength of Tablet-Shaped Accelerators (타블렛 형태 급결제가 콘크리트의 응결시간 및 조기강도에 미치는 영향에 관한 연구)

  • Ryou, Jae-Suk;Lee, Yong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.347-352
    • /
    • 2011
  • When concrete is worked in cold weather, the methods of using hot air, water and aggregate heating, accelerators are used to prevent early frosting and to improve early strength. But these methods raise problems such as implementation difficulty, high cost, and energy losses. Among the available cold weathering methods, accelerator method is the most economical but with the drawbacks of rapid setting and insufficient workability in the initial hydration stage. Therefore, the tablet method usually used for pharmaceutical field was applied to the accelerator method to compare the controlled reaction time of the new and old accelerator method. Based on the test results, physical and mechanical properties of concrete were tested and the possibility of delaying initial reactions to increase the total reaction time was evaluated. The results showed that when both accelerators and tablet were used, setting-time decreased. Physical properties of concrete were optimal for tablet 0.5% and 1.0%. Also, accelerator 0.5%, tablet 0.5% and 1.0% showed good early strengths.

Fundamental Properties of Magnesia-Prosphate Composite Considering Mix Conditions and Curing Temperature (배합조건 및 양생온도에 따른 마그네시아 인산염 복합체의 기초물성 평가)

  • Cho, Hyun Woo;Kang, Su Tae;Shin, Hyun Seop;Lee, Jang Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.163-170
    • /
    • 2012
  • With the advantage of a rapid exothermic reaction property, jet set concrete may be used as a cold weather concrete because it can reach the required strength before being damaged by cold weathers. And it can be hardened more quickly if the field temperature is properly compensated by heating. Because ordinary concrete cannot be hardened well under sub-zero temperatures, anti-freeze agents are typically added to prevent the frost damage and to ensure the proper hardening of concrete. While the addition of a large amount of anti-freeze agent is effective to prevent concrete from freezing and accelerates cement hydration resulting in shortening the setting time and enhancing the initial strength, it induces problems in long-term strength growth. Also, it is not economically feasible because most anti-freeze agents are mainly composed of chlorides. Recent studies reported that magnesia-phosphate composites can be hardened very quickly and hydrated even in low temperatures, which can be used as an alternative of cold weather concrete for cold weathers and very cold places. As a preliminary study, to obtain the material properties, mortar specimens with different mixture proportions of magnesia-phosphate composites were manufactured and series of experiments were conducted varying the curing temperature. From the experimental results, an appropriate mixture design for cold weathers and very cold places is suggested.

The Behavior of Leachate on The Transient Condition in The Nanji Waste Landfill (부정류 상태에서의 난지도 매립지 침출수 거동 예측)

  • 강동희;조원철;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.57-67
    • /
    • 2001
  • The purpose of this study is to predict appropriate leachate rates and leachate transport velocity through weathered zone and basement rock on the transient condition at Nanji waste landfill. The leachate transport in the Nanji waste landfill is analyzed using MODFLOW(A Modular 3-D Finite Different Groundwater Flow Model) model which simulates three dimension groundwater flow and MT3D(A Modular Three Dimentional Transport Model) model which describes three dimensional transport for advection, dispersion and chemical reaction of dissolved constituents in groundwater system on the transient condition. Leachate production rates are estimated by HELP(Hydraulical Evaluation of Landfill Performance) model and used weather records for recent 10 years. Leachate transport is predicted by a change of leachate level to after/before established HDPE, established slurry wall and wells.

  • PDF

Invasive Pulmonary Aspergillosis in a Whooper Swan (Cygnus c. cygnus) (큰고니에서 발생한 침습성 폐 아스퍼질러스 감염증 1례)

  • Kim, Kyoo-Tae;Cho, Sung-Whan;Son, Hwa-Young;Ryu, Si-Yun
    • Journal of Veterinary Clinics
    • /
    • v.23 no.4
    • /
    • pp.472-475
    • /
    • 2006
  • Aspegillosis in free-living birds can be occurred mostly under poor weather and climate. But, captive birds tend to be more susceptible to infection and diagnosis was made usually at post mortem. A two months old Whooper swan(Cygnus c. cygmus) dying suddenly was found in a zoo without prior clinical signs. At necropsy, numerous well- demarcated yellow to white firm nodules were scattered throughout the air sacs and the lungs. Microscopically, granuloma formations were observed in the lung and air sacs. The margin of granuloma was surrounded by connective tissue barrier and was infiltrated with lymphocytes, and also observed giant cell near the granuloma. By Periodic acid Schiff reaction, hyphae were detected in granuloma of lung and air sacs. This case was diagnosed as an invasive pulmonary aspergillosis caused by Aspergillus fumigatus infection in a Whooper swan at a zoo.

The Effects of the Creative Thinking and Creative Personality Using the 'Weather and our life' on Science-Based STEAM (과학 기반 STEAM의 '날씨와 우리생활' 학습이 창의적사고 및 창의적 인성에 미치는 효과)

  • Lee, Yong-Seob;Kim, Yoon-Kyung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.2
    • /
    • pp.204-212
    • /
    • 2012
  • The purpose of this study was to examine the effects of science-based STEAM on creative thinking and creative personality. For this study the 3 grade, 2 class was divided into a research group and a comparative group. The class was pre-tested in order to ensure the same standard. The research group had the science class with science-based STEAM, and the comparative group had the class with teacher centered lectures for 5 months. The science-based STEAM was focused on finding stories in lifes, composition of knowledge, completion of knowledge. The results of this study are as follows. First, science-based STEAM was effective in creative thinking. Second, science-based STEAM was effective in creative personality. Also, after using science-based STEAM was good reaction by students. As a result, the elementary science class with science-based STEAM had the effects of developing creative thinking and creative personality. it means the science class with creative personality has potential possibilities and value to develop creative thinking and creative personality.