• 제목/요약/키워드: Weather observation satellite

검색결과 111건 처리시간 0.023초

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2004년도 대한지구물리학회.한국지구물리탐사학회 공동학술대회 초록집
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

INTRODUCTION OF COMS SYSTEM

  • Baek, Myung-Jin;Han, Cho-Young
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.56-59
    • /
    • 2006
  • In this paper, Korea's first geostationary Communication, Ocean and Meteorological Satellte(COMS) program is introduced. COMS program is one of the Korea National Space Programs to develop and operate a pure civilian satellite of practical-use for the compound missions of meteorological observation and ocean monitoring, and space test of experimentally developed communication payload on the geostationary orbit. The target launch of COMS is scheduled at the end of 2008. COMS program is international cooperation program between KARI and ASTRIUM SAS and funded by Korean Government. COMS satellite is a hybrid satellite in the geostationary orbit, which accommodates multiple payloads of MI(Meteorological Imager), GOCI(Geostationary Ocean Color Imager), and the Ka band Satellite Communication Payload into a single spacecraft platform. The MI mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The GOCI mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service mandatory.

  • PDF

천리안 위성 Ka 대역 통신탑재체시스템 기술 (Ka band Communication Payload System Technology of COMS)

  • 이성팔;조진호;유문희;최장섭;안기범
    • 한국위성정보통신학회논문지
    • /
    • 제5권2호
    • /
    • pp.75-81
    • /
    • 2010
  • 통신해양기상위성은 4개 정부부처 공동사업으로, 통신서비스, 해양기상 관측서비스를 7년간 제공하게 된다. 위성 스위칭 중계기와 다중빔 안테나로 구성된 Ka 통신탑재체 개발은 방송통신위원회 출연으로 ETRI 주관으로 개발하였으며, 통신탑재체 개발목적은 우주인증 기술확보와 차세대 멀티미디어 위성서비스 개발이다. 본 논문 목적은 통해기 통신탑재체 국산 개발사업의 전 과정을 통한, ETRI 의 Ka대역 통신탑재체 개발기술 연구이며, 또한 통신탑재체 응용 기술에 대해 다루고자 한다.

Application of machine learning for merging multiple satellite precipitation products

  • Van, Giang Nguyen;Jung, Sungho;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.134-134
    • /
    • 2021
  • Precipitation is a crucial component of water cycle and play a key role in hydrological processes. Traditionally, gauge-based precipitation is the main method to achieve high accuracy of rainfall estimation, but its distribution is sparsely in mountainous areas. Recently, satellite-based precipitation products (SPPs) provide grid-based precipitation with spatio-temporal variability, but SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution quite coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation using Automatic weather system (AWS) in Korea and multiple SPPs(i.e. CHIRPSv2, CMORPH, GSMaP, TRMMv7) during the period of 2003-2017. And this study used a machine learning based Random Forest (RF) model for generating new merging precipitation. In addition, several statistical linear merging methods are used to compare with the results of the RF model. In order to investigate the efficiency of RF, observed data from 64 observed Automated Synoptic Observation System (ASOS) were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the random forest model showed higher accuracy than each satellite rainfall product and spatio-temporal variability was better reflected than other statistical merging methods. Therefore, a random forest-based ensemble satellite precipitation product can be efficiently used for hydrological simulations in ungauged basins such as the Mekong River.

  • PDF

열적외 영상과 Landsat 8 위성으로부터 관측된 지표면 온도 비교 (Comparison of Surface Temperatures between Thermal Infrared Image and Landsat 8 Satellite)

  • 조채윤;지준범;박문수;박성화;최영진
    • 한국대기환경학회지
    • /
    • 제32권1호
    • /
    • pp.46-56
    • /
    • 2016
  • In order to analyze the surface temperature in accordance with the surface material, surface temperatures between Thermal InfraRed Image (TIRI) and Landsat 8 satellite observed at the commercial area (Gwanghwamun) and residential area (Jungnang) are compared. The surface temperature from TIRI had applied atmospheric correction and compared with that from Landsat 8. The surface temperatures from Landsat 8 at Gwanghwamun and Jungnang are underestimated in comparison with that from TIRI. The difference of surface temperature between the two methods is greater in summer than in winter. When the analysis area was divided into detailed regions, depending on the material and the position of the surface, correlation of surface temperature between TIRI with Landsat 8 is as low as 0.29 (Gwanghwamun) and 0.18 (Jungnang), respectively. The results were caused from the resolution difference between the two methods. While the surface temperatures of each zone from Landsat 8 were observed almost constant, high-resolution TIRI observed relatively precise surface temperatures. When the each area was averaged as one space, correlation of surface temperature between TIRIs and Landsat 8 is more than 0.95. The spatially averaged surface temperature is higher at Jungnang, representing residential areas, than at Gwanghwamun, representing commercial areas. As a result, the observation of high resolution is required in order to observe the precise surface temperature. This is because it appears that the spatial distribution of the various surface temperature in the range of micro-scale according to the conditions of the ground surface.

KIAPS 전지구 수치예보모델 시스템에서 SAPHIR 자료동화 효과 (Impact of SAPHIR Data Assimilation in the KIAPS Global Numerical Weather Prediction System)

  • 이시혜;전형욱;송효종
    • 대기
    • /
    • 제28권2호
    • /
    • pp.141-151
    • /
    • 2018
  • The KIAPS global model and data assimilation system were extended to assimilate brightness temperature from the Sondeur $Atmosph{\acute{e}}rique$ du Profil $d^{\prime}Humidit{\acute{e}}$ Intertropicale par $Radiom{\acute{e}}trie$ (SAPHIR) passive microwave water vapor sounder on board the Megha-Tropiques satellite. Quality control procedures were developed to assess the SAPHIR data quality for assimilating clear-sky observations over the ocean, and to characterize observation biases and errors. In the global cycle, additional assimilation of SAPHIR observation shows globally significant benefits for 1.5% reduction of the humidity root-mean-square difference (RMSD) against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analysis. The positive forecast impacts for the humidity and temperature in the experiment assimilating SAPHIR were predominant at later lead times between 96- and 168-hour. Even though its spatial coverage is confined to lower latitudes of $30^{\circ}S-30^{\circ}N$ and the observable variable is humidity, the assimilation of SAPHIR has a positive impact on the other variables over the mid-latitude domain. Verification showed a 3% reduction of the humidity RMSD with assimilating SAPHIR, and moreover temperature, zonal wind and surface pressure RMSDs were reduced up to 3%, 5% and 7% near the tropical and mid-latitude regions, respectively.

농림업 중형위성 개발정책 수립에 관한 연구 (A Study on the Establishment of Agricultural Satellite Development Policy)

  • 김현철;김아름;김범승;홍석영;이우경
    • 한국위성정보통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.87-94
    • /
    • 2015
  • 전 세계적으로 지구관측 위성의 수요가 증가함에 따라 위성영상을 활용한 연구가 다양한 분야에서 진행되고 있다. 국내에서 추진 중인 차세대 중형위성 개발 사업에서는 지상관측, 기상 기후, 환경감시 등 다양한 임무를 수행하기 위해 국내 독자기술로 위성을 개발할 예정이며, 개발된 위성들은 농촌진흥청, 기상청, 환경부, 국토교통부 등에서 공동으로 활용할 계획에 있다. 특히 공공수요 중 국토의 상당 부분을 차지하는 농림업분야에서 중형위성의 활용이 커질 것으로 예상된다. 본 논문에서는 국내 농림업 관련 수요기관에서 위성영상이 활용될 수 있는 방안을 정립하고, 농림업에 특화된 위성 탑재체를 확보하기 위한 전략을 수립하였다. 차세대 중형위성 기술요소의 경우 활용범위와 가치가 높은 반면 효율성을 고려하여 국내에서 독자적으로 개발될 예정이다. 본 논문에서 다루는 농림업 중형위성 개발 정책수립은 향후 국내 차세대 중형위성 개발 사업 계획 수립 및 농림업 위성관측 체계 구축에 참고자료로 활용될 것으로 기대된다.

Reconstruction and Validation of Gridded Product of Wind/Wind-stress derived by Satellite Scatterometer Data over the World Ocean and its Impact for Air-Sea Interaction Study

  • Kutsuwada, Kunio;Koyama, Makoto;Morimoto, Naoki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.33-36
    • /
    • 2007
  • We have persistently constructed gridded products of surface wind/wind stress over the world ocean using satellite scatterometer (ERS and Qscat). They are available for users as the Japanese Ocean Flux data sets with Use of Remote sensing Observation (J-OFURO) data together with heat flux components. Recently, a new version data of the Qscat/SeaWinds based on improved algorithm for rain flag and high wind-speed range have been delivered, and allowed us to reconstruct gridded product with higher spatial resolution. These products are validated by comparisons with in-situ measurement data by mooring buoys such as TAO/TRITON, NDBC and the Kuroshio Extension Observation (KEO) buoys, together with numerical weather prediction model products such as the NCEP-1 and 2. Results reveal that the new product has almost the same magnitude in mean difference as the previous version of Qscat product and much smaller than the NCEP-1 and 2. On the other hand, it is slightly larger root-mean-square (RMS) difference than the previous one and NCEPs for the comparison using the KEO buoy data. This may be due to the deficit of high wind speed data in the buoy measurement. The high resolution product, together with sea surface temperature (SST) one, is used to examine a new type of relationship between the lower atmosphere and upper ocean in the Kuroshio Extension region.

  • PDF

한반도 주변상공의 정지궤도 인공위성 분광관측1 (SPECTROSCOPIC OBSERVATIONS OF GEO-STAT10NARY SATELLITES OVER THE KOREAN PENINSULA)

  • 이동규;김상준;한원용;박준성;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.101-108
    • /
    • 2001
  • 경희대학교의 인공위성 관측용 40cm 망원경 시스템을 이용하여 한반도 주변상공에서 관측이 가능한 정지궤도위성 중 6개국의 통신위성 9기와 기상위성 1기를 선정하여 저분산 분광관측을 시도하였다. 그 결과 가시광 영역에서 인공위성 각각의 고유한 분광선 형태가 상호간 현저하게 차이가 있어 보였고 이를 분광선 패턴에 따라 4종류의 그룹으로 분류가 가능하였다 국가별, 임무별로 인공위성의 정밀한 분광선 패턴별 목록화를 위해서는 더 많은 인공위성의 분광관측 데이터가 필요하고 이를 바탕으로 지상 실험실 측정자료와 비교하여 인공위성의 외부 구조체 재질과 색깔을 식별하여야 한다.

  • PDF

한반도에 발생한 위험 기상 사례에 대한 관측 민감도 분석 (Forecast Sensitivity to Observations for High-Impact Weather Events in the Korean Peninsula)

  • 김세현;김현미;김은정;신현철
    • 대기
    • /
    • 제23권2호
    • /
    • pp.171-186
    • /
    • 2013
  • Recently, the number of observations used in a data assimilation system is increasing due to the enormous amount of observations, including satellite data. However, it is not clear that all of these observations are always beneficial to the performance of the numerical weather prediction (NWP). Therefore, it is important to evaluate the effect of observations on these forecasts so that the observations can be used more usefully in NWP process. In this study, the adjoint-based Forecast Sensitivity to Observation (FSO) method with the KMA Unified Model (UM) is applied to two high-impact weather events which occurred in summer and winter in Korea in an effort to investigate the effects of observations on the forecasts of these events. The total dry energy norm is used as a response function to calculate the adjoint sensitivity. For the summer case, TEMP observations have the greatest total impact while BOGUS shows the greatest impact per observation for all of the 24-, 36-, and 48-hour forecasts. For the winter case, aircraft, ATOVS, and ESA have the greatest total impact for the 24-, 36-, and 48-hour forecasts respectively, while ESA has the greatest impact per observation. Most of the observation effects are horizontally located upwind or in the vicinity of the Korean peninsula. The fraction of beneficial observations is less than 50%, which is less than the results in previous studies. As an additional experiment, the total moist energy norm is used as a response function to measure the sensitivity of 24-hour forecast error to observations. The characteristics of the observation impact with the moist energy response function are generally similar to those with the dry energy response function. However, the ATOVS observations were found to be sensitive to the response function, showing a positive (a negative) effect on the forecast when using the dry (moist) norm for the summer case. For the winter case, the dry and moist energy norm experiments show very similar results because the adjoint of KMA UM does not calculate the specific humidity of ice properly such that the dry and moist energy norms are very similar except for the humidity in air that is very low in winter.