• Title/Summary/Keyword: Weather generation

Search Result 378, Processing Time 0.022 seconds

STOCHASTIC SIMULATION OF DAILY WEATHER VARIABLES

  • Lee, Ju-Young;Kelly brumbelow, Kelly-Brumbelow
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.111-126
    • /
    • 2003
  • Meteorological data are often needed to evaluate the long-term effects of proposed hydrologic changes. The evaluation is frequently undertaken using deterministic mathematical models that require daily weather data as input including precipitation amount, maximum and minimum temperature, relative humidity, solar radiation and wind speed. Stochastic generation of the required weather data offers alternative to the use of observed weather records. The precipitation is modeled by a Markov Chain-exponential model. The other variables are generated by multivariate model with means and standard deviations of the variables conditioned on the wet or dry status of the day as determined by the precipitation model. Ultimately, the objective of this paper is to compare Richardson's model and the improved weather generation model in their ability to provide daily weather data for the crop model to study potential impacts of climate change on the irrigation needs and crop yield. However this paper does not refer to the improved weather generation model and the crop model. The new weather generation model improved will be introduced in the Journal of KWRA.

  • PDF

Photovoltaic Generation System Simulation using Real Field Weather Conditions

  • Park, Min-Won;Yu, In-Keun
    • Journal of IKEEE
    • /
    • v.5 no.2 s.9
    • /
    • pp.121-127
    • /
    • 2001
  • Actual system apparatuses are necessary in order to verify the efficiency and stability of photovoltaic(PV) generation systems considering the size of solar panel, the sort of converter type, and the load conditions and so on. Moreover, it is hardly possible to compare a certain MPPT control scheme with others under the exactly same weather and load conditions as well. For the purpose of solving above mentioned difficulties in a laboratory basis, a transient simulation of PV generation system using real field weather conditions is indispensable. A straightforward simulation scheme with cost effective hardware structures under real weather conditions is proposed in this paper using EMTDC type of transient analysis simulators. Firstly, a solar cell has been modeled with VI characteristic equations, and then the real field data of weather conditions are interfaced to the EMTDC through Fortran program interface method. As a result, the stability and the efficiency analysis of PV generation systems according to various hardware structures and MPPT controls are easily possible under the exactly same weather conditions.

  • PDF

Analysis on Electrical Characteristics of PV Cells considering Ambient Temperature and Irradiance Level (주변온도와 일사량을 고려한 PV Cell의 전기적 특성 분석)

  • Park, Hyeonah;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.481-485
    • /
    • 2016
  • When analyzing economic feasibility for installing a PV generation plant at a certain location, the prediction of possible annual power production at the site using the target PV panels should be conducted on the basis of the local weather data provided by a local weather forecasting office. In addition, the prediction of PV generating power under certain weather conditions is useful for fault diagnosis and performance evaluation of PV generation plants during actual operation. This study analyzes PV cell characteristics according to a variety of weather conditions, including ambient temperature and irradiance level. From the analysis and simulation results, this work establishes a proper model that can predict the output characteristics of PV cells under changes in weather conditions.

A Case Study for Analyzing the Optimal Location for A Solar Power Plant via AHP Analysis with Fine Dust and Weather Information (미세먼지와 기상정보 기반의 AHP 분석을 통하여 태양광 발전소 최적입지선정에 대한 사례연구)

  • Lee, Geon-ju;Lee, Gi-Hyun;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.157-167
    • /
    • 2017
  • Solar energy has been known as a successful alternative energy source, however it requires a large area to build power generation facilities compared to other energy sources such as nuclear power. Weather factors such as rainy weather or night time impact on solar power generation because of lack of insolation and sunshine. In addition, solar power generation is vulnerable to external elements such as changes in temperature and fine dust. There are four seasons in the Republic of Korea hereby variations of temperature, insolation and sunshine are broad. Currently factors that cause find dust are continuously flowing in to Korea from abroad. In order to build a solar power plant, a large area is required for a limited domestic land hereby selecting the optimal location for the plant that maximizes the efficiency of power generation is necessary. Therefore, this research analyze the optimal site for solar power generation plant by implementing analytic hierarchy process based on weather factors such as fine dust. In order to extract weather factors that impact on solar power generation, this work conducts a case study which includes a correlation analysis between weather information and power generation.

Benefits of the Next Generation Geostationary Meteorological Satellite Observation and Policy Plans for Expanding Satellite Data Application: Lessons from GOES-16 (차세대 정지궤도 기상위성관측의 편익과 활용 확대 방안: GOES-16에서 얻은 교훈)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.201-209
    • /
    • 2018
  • Benefits of the next generation geostationary meteorological satellite observation (e.g., GEO-KOMPSAT-2A) are qualitatively and comprehensively described and discussed. Main beneficial phenomena for application can be listed as tropical cyclones (typhoon), high impact weather (heavy rainfall, lightning, and hail), ocean, air pollution (particulate matter), forest fire, fog, aircraft icing, volcanic eruption, and space weather. The next generation satellites with highly enhanced spatial and temporal resolution images, expanding channels, and basic and additional products are expected to create the new valuable benefits, including the contribution to the reduction of socioeconomic losses due to weather-related disasters. In particular, the new satellite observations are readily applicable to early warning and very-short time forecast application of hazardous weather phenomena, global climate change monitoring and adaptation, improvement of numerical weather forecast skill, and technical improvement of space weather monitoring and forecast. Several policy plans for expanding the application of the next generation satellite data are suggested.

PV Power Prediction Models for City Energy Management System based on Weather Forecast Information (기상정보를 활용한 도시규모-EMS용 태양광 발전량 예측모델)

  • Eum, Ji-Young;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.393-398
    • /
    • 2015
  • City or Community-scale Energy Management System(CEMS) is used to reduce the total energy consumed in the city by arranging the energy resources efficiently at the planning stage and controlling them economically at the operating stage. Of the operational functions of the CEMS, generation forecasting of renewable energy resources is an essential feature for the effective supply scheduling. This is because it can develop daily operating schedules of controllable generators in the city (e.g. diesel turbine, micro-gas turbine, ESS, CHP and so on) in order to minimize the inflow of the external power supply system, considering the amount of power generated by the uncontrollable renewable energy resources. This paper is written to introduce numerical models for photo-voltaic power generation prediction based on the weather forecasting information. Unlike the conventional methods using the average radiation or average utilization rate, the proposed models are developed for CEMS applications using the realtime weather forecast information provided by the National Weather Service.

Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction (현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

The Development of the Predict Model for Solar Power Generation based on Current Temperature Data in Restricted Circumstances (제한적인 환경에서 현재 기온 데이터에 기반한 태양광 발전 예측 모델 개발)

  • Lee, Hyunjin
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • Solar power generation influenced by the weather. Using the weather forecast information, it is possible to predict the short-term solar power generation in the future. However, in limited circumstances such as islands or mountains, it can not be use weather forecast information by the disconnection of the network, it is impossible to use solar power generation prediction model using weather forecast. Therefore, in this paper, we propose a system that can predict the short-term solar power generation by using the information that can be collected by the system itself. We developed a short-term prediction model using the prior information of temperature and power generation amount to improve the accuracy of the prediction. We showed the usefulness of proposed prediction model by applying to actual solar power generation data.

The Estimation of Users' Benefit in Next Generation Urban and Rural Smart Weather Service Technique Research and Development Project (차세대 도시.농림 융합 스마트 기상서비스기술 개발 사업의 이용자 측면 편익 추정)

  • Lee, Joo Suk;Yoo, Seung Hoon
    • Journal of Korea Technology Innovation Society
    • /
    • v.16 no.3
    • /
    • pp.630-649
    • /
    • 2013
  • Korea Meteorological Administration has promoted the next generation urban and rural smart weather service project. The purpose of this project is to provide the necessary information to urban and rural districts by using the subdivided meteorological information. This study attempts to assess the value of the next generation urban and rural smart weather service project by using contingent valuation method. According to estimating result, annual mean willingness to pay per household for the next generation urban and rural smart weather service project is 2,947 won.

  • PDF

A Study on Estimation of Wind Power Generation using Weather Data in Jeju Island (기상관측자료를 이용한 제주도 풍력단지의 풍력발전량 예측에 관한 연구)

  • Ryu, Goo-Hyun;Kim, Ki-Su;Kim, Jae-Chul;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2349-2353
    • /
    • 2009
  • Due to high oil price and global warming of the earth, investments for renewable energy have been increased a lot continuously. Specially, wind power has been received a great attention in the world. In order to construct a new wind farm, forecasting of wind power generation is essential for a feasibility test. This paper investigates wind velocity measurement data of Gosan weather station which located in Hankyung of Jeju island. This paper presents results of estimation of wind power generation using digital weather forecast provided from Korea meteorological administration, and the accuracy of the wind power forecasting by comparison between forecasted data and actual wind power data.