• Title/Summary/Keyword: Weather conditions

Search Result 1,796, Processing Time 0.035 seconds

A Study on Evacuation Time According to Seafarer Visibility (선원들의 가시거리별 피난시간 연구)

  • Kim, Won-Ouk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.600-606
    • /
    • 2016
  • Seafarers are often placed in circumstances that require emergency evacuations due to various causes, including ship collisions, sinking, stranding, and fires. Achieving shorter evacuation time is an important factor in increasing the survival rate during these circumstances, but the narrow and complicated structure of ships is an obstacle when it comes to executing a quick evacuation. Also, unpredictable restrictions may be imposed by bad sea or weather. In this study, various experiments were conducted with sailors currently on board ships in order to examine factors that increase evacuation time. The data was then and analyzed. Evacuation time was measured by dividing crews into groups: sailors that were given an explanation of the ship's structure and those that were not. Furthermore, the visibility range was divided into 0 m, 3 m, and 5 m. The results indicated that, having an explanation of the ship structure did not have much of an effect on evacuation time but visibility conditions led to an increase in evacuation time with a maximum of 2.5 to 2.6 times longer when the visible distance was 5 m, 0 m and 3 m. Therefore, ensuring a visible distance of over 5 m was determined to be the most important factor for reducing evacuation time. In the future, effort should be made to ensure a greater visible distance to improve the survival rate of seafarers and passengers on board ships that encounter incidents.

Spatial Characteristics of Vegetation Development and Groundwater Level in Sand Dunes on a Natural Beach (해안사구의 지하수위와 식생 발달의 공간적 특성 연구)

  • Park, JungHyun;Yoon, Han-sam;Jeon, Yong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.218-226
    • /
    • 2016
  • Field observations were used to study the characteristics and influence of groundwater level fluctuations on vegetation development on the natural beach of a sandy barrier island, in the Nakdong River estuary. The spatial/temporal fluctuations of the groundwater level and the interactions with the external forces (weather, ocean wave and tide) were analyzed. The results indicated that when it rains the groundwater level rises. During summer, when precipitation intensity is greater than 20 mm/hour, it rose rapidly over 20 cm. Subsequently, it fell gradually during periods of no precipitation. Seasonal characteristics indicated that the groundwater level was high during the summer rainy season and tended to fall in the winter dry season. The time-averaged groundwater level, observed from the four observations over 3 years (2012-2014), was about 1.47 m, higher than mean sea level (M.S.L.). It was shown that the average annual groundwater level rises toward the land rather than showing intertidal patterns observation. Differences in the presence or absence of a coastal sand dunes affected the progress of vegetation. In other words, in environments of saltwater intrusion where the groundwater level varies, dependent on the distance from the shoreline and bottom slope, sand dunes can be provided to affect soil conditions and groundwater, so that vegetation can be grown reliably.

Application of Heat Balance Model Design of Ventilating and Cooling Greenhouse (온실의 환기 및 냉방 설계를 위한 열평형 모델의 작용)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.201-206
    • /
    • 2000
  • A certain system to overcome high temperature should be introduced for the stable year-round cultivation in greenhouses. There are efficient methods to overcome high temperature such as ventilation system with shading screen, fan and pad system with screen, and fog system with screen. This study was carried out to find a means to determine the capacity of such system. Heat balance equations for each system were established and verified by experimental results. The calculated ventilation rates from heat balance equations showed a good agreement with the measured ones. The evapotranspiration coefficient was the most important parameter affecting the ventilation requirement among input parameter affecting the ventilation requirement among input parameters except weather data. When the evaportanspiration coefficient increased 1%, the ventilation requirement decreased 1.3%. Therefore the data of evapotranspiration coefficient should be accumulated by various experiments, and then design standards and selection guidelines should be provided. The simulation results for same design conditions shown that air exchanges requirement and evaporating water of fan and pad system were 5.1∼7.7% and 6.8∼9.3% larger than those of fog system, respectively.

  • PDF

A study on freeze-thaw evaluation criteria for road tunnels considering climate characteristics (국내 기후특성을 고려한 도로터널의 동결-융해 평가기준 연구)

  • Moon, Joon-Shik;An, Jai-Wook;Kim, Hong-Kyoon;Lee, Jong-Gun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.121-133
    • /
    • 2020
  • Globally, the frequency and intensity of abnormal climate events are increasing. Since this can directly damage lives and property, it is important to establish and implement an appropriate maintenance strategy in response to abnormal weather. Facilities built in cold regions where cold wave or heavy snow occurs frequently can be more damaged by freeze-thaw than facilities located in other regions. However, there are no clear criteria for quantitatively identifying the damage of freeze-thaw and how to cope with it. Therefore, based on the results of indoor freezing tests, the freezing conditions considering regional climate characteristics were selected as one day at -14℃, two days at -7℃ or three days at -5℃. As a result, it was confirmed that they were in the freeze-thaw environment in order of Daegwallyeing (8.3 times), Cheorwon (5.3 times) and Taebeak (4.9 times) in Gangwon region. Through this study, the evaluation criteria of freeze-thaw of road tunnels were newly proposed. The freeze-thaw evaluation criteria of the road tunnel presented in this study can be used for the quantitative evaluation and maintenance strategy of tunnels in cold regions.

A Study of Kwon Kisoo's Paintings : focused on The 'Four Gracious Plants' and 'Dongguri'

  • Adjah, John;Hong, Mi-Hee
    • Cartoon and Animation Studies
    • /
    • s.40
    • /
    • pp.497-519
    • /
    • 2015
  • Kwon Kisoo is one of the most promising artist in Korea. His paintings portray a lot of metaphors and philosophies in oriental art. As an artist, he adapts both oriental and contemporary ideas to make his paintings. His main motifs are Plum blossoms, Chrysanthemum, Orchid and Bamboos. These plants are known as 'Sa-gonja' in Korean but translated as the 'Four Gracious plants' or the 'Four Gentle Plants in english'. These noble plants represent the four seasons. They grow in different weather conditions. In oriental art, these plants are considered very important for their qualities. These qualities are important attributes for gentlemen in literati painting. The drawing of the 'Four Gracious Plants' in Kwon Kisoo's paintings is simplified. He uses lines, shapes and colour to create contours of the motifs. In his paintings, there is another icon he calls 'Dongguri'. Dongguri is the main character in Kwon Kisoo's paintings. It was developed in 2002 by fast brush strokes. Dongguri is an admired character because it looks like very cute in Kwon Kisoo's paintings. Dongguri is always seen living in the midst of the 'Four Gracious Plants'. The 'Four Gracious Plants' with other landscape features like rocks and mountains are places 'Dongguri' lives. Dongguri is also often found performing a lot of actions like climbing, running, sitting etc. All these actions depict metaphors which have been unraveled in this study.

Data Mining based Forest Fires Prediction Models using Meteorological Data (기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.521-529
    • /
    • 2020
  • Forest fires are one of the most important environmental risks that have adverse effects on many aspects of life, such as the economy, environment, and health. The early detection, quick prediction, and rapid response of forest fires can play an essential role in saving property and life from forest fire risks. For the rapid discovery of forest fires, there is a method using meteorological data obtained from local sensors installed in each area by the Meteorological Agency. Meteorological conditions (e.g., temperature, wind) influence forest fires. This study evaluated a Data Mining (DM) approach to predict the burned area of forest fires. Five DM models, e.g., Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), Decision Tree (DT), Random Forests (RF), and Deep Neural Network (DNN), and four feature selection setups (using spatial, temporal, and weather attributes), were tested on recent real-world data collected from Gyeonggi-do area over the last five years. As a result of the experiment, a DNN model using only meteorological data showed the best performance. The proposed model was more effective in predicting the burned area of small forest fires, which are more frequent. This knowledge derived from the proposed prediction model is particularly useful for improving firefighting resource management.

Use of Herbicides and the Residues (제초제(除草劑) 사용(使用)과 잔류(殘留))

  • Moon, Y.H.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.13 no.4
    • /
    • pp.234-249
    • /
    • 1993
  • Herbicide is an essential agricultural chemical in the modern agriculture. Due to its bioactivity, however, risk of herbicide use against non-target organisms should be seriously considered. Among the unfavorable aspects given by herbicide, the residue is the most important because herbicide residue in soil and agricultural product is closely related to human safety. The residue in soil and crop is dependent on conditions of soil, weather, herbicide use and crop cultivation, etc. In general, the residue in soil or agricultural product in Korea is known to be not serious at this moment, except for some problems like carry-over effect on succeeding crops. To secure safety of herbicide use for the health, soil ecology and other environment, researches on herbicide residue including monitoring survey should be done more frequently and extensively. Safety guide for herbicide usage should be kept by farmers and development of long toxic herbicide should be accelerated.

  • PDF

A Study on Lashing Standards for Car Ferry Ships Sailing in Smooth Sea Areas (평수구역을 운항하는 여객선의 차량고박 기준에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun;Kim, Deug-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In recent years, cargo lashing has received much importance, to help prevent the sinking of passenger ships due to the failure of vehicle and cargo lashing during the transshipment of cargo. Consequently, the standards for lashing equipment and the structure of car ferries have been revised. According to the current standards, all vehicles loaded on a car ferry sailing in smooth sea areas must be secured if the wind speed and wave height exceed 7 m/s and 1.5 m, respectively. In this study, we measured the roll and pitch of a passenger ship sailing in smooth sea areas, and compared the measurements with the results of the New Strip Method (NSM). The vessel had a maximum pitch of 1.41° and a maximum roll of 1.37° at a wind speed of 6-8 m/s and a wave height of 0.5-1.0 m, and a maximum pitch of 1.49° and a maximum roll of 2.43° at a wind speed of 10-12 m/s and a wave height of 1.0-1.5 m. A comparison of the external forces due to the motion of the hull and the bearing capacity without lashing indicated that the bearing capacity was stronger. This suggests that vehicles without lashing will not slip or fall due to weather conditions. In future, the existing vehicle lashing standards can be revised after measuring the hull motions of various ships, and comparing the external force and bearing capacity, to establish more reasonable requirements.

Developing a Model to Predict Road Surface Temperature using a Heat-Balance Method, Taking into Traffic Volume (교통량을 고려한 열수지법에 의한 노면온도 예측모형의 구축)

  • Son, Young-Tae;Jeon, Jin-Suk;Whang, Jun-Mun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.30-38
    • /
    • 2015
  • In this study, to improve effectiveness of road management services and the safety of the road in winter, road surface temperature prediction model was developed. We have utilized the existing input data of meteorological data and additional traffic data. This Road surface temperature prediction model was utilizing a Heat-Balance Method additionally considering amount of traffic that produce heat radiation by vehicle-tire friction. This improved model was compared to the based model to check into influence of traffic affecting the road surface temperature. There were verified by comparing the real observed road surface temperature of the third Gyeong-In highway and road surface temperature from the two models. As a result, the error of real observed and the predicted value (RMSE) was found to average $1.97^{\circ}C$. Observed road surface temperature was dramatically affected by the sunlight from 6 a.m. to 2 p.m. and degree of influence decreases after that. The predictive value of the model is lower than the observed value in the afternoon, and higher at night. These results appear due to the shielding of solar radiation caused by the vehicle in the afternoon and at night, the vehicle appeared to cause thermal heat supply.

A study on the Traffic Density Collect System using View Synthesis and Data Analysis (영상정합을 이용한 교통밀도 수집방법과 수집 데이터 비교분석)

  • Park, Bumjin;Roh, Chang-gyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.77-87
    • /
    • 2018
  • Traffic Density is the most important of the three primary macroscopic traffic stream parameters, because it is most directly related to traffic demand(Traffic Engineering, 2004). It is defined as the number of existing vehicles within a given distance at a certain time. However, due to weather, road conditions, and cost issues, collecting density directly on the field is difficult. This makes studies of density less actively than those of traffic volume or velocity. For these reasons, there is insufficient attempts on divers collecting methods or researches on the accuracy of measured values. In this paper, we used the 'Density Measuring System' based on the synthesise technology of several camera images as a method to measure density. The collected density value by the 'Density Mesuring System' is selected as the true value based on the density define, and this value was compared with the density calculated by the traditional measurement methods. As a result of the comparison, the density value using the fundamental equation method is the closest to the true value as RMSE shows 1.8 to 2.5. In addition, we investigated some issues that can be overlooked easily such as the collecting interval to be considered on collecting density directly by calculating the moment density and the average density. Despite the actual traffic situation of the experiment site is LOS B, it is difficult to judge the real traffic situation because the moment density values per second are observed max 16.0 (veh/km) to min 2.0 (veh/km). However, the average density measured for 15 minutes at 30-second intervals was 8.3-7.9 (veh/km) and it indicates precisely LOS B.