• Title/Summary/Keyword: Weather conditions

Search Result 1,753, Processing Time 0.038 seconds

Analysis of Public Transport Ridership during a Heavy Snowfall in Seoul (기상상황에 따른 서울시 대중교통 이용 변화 분석: 폭설을 중심으로)

  • Won, Minsu;Cheon, Seunghoon;Shin, Seongil;Lee, Seonyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.859-867
    • /
    • 2019
  • Severe weather conditions, such as heavy snowfall, rain, heatwave, etc., may affect travel behaviors of people and finally change traffic patterns in transportation networks. To deal with those changes and prevent any negative impacts on the transportation system, understanding those impacts of severe weather conditions on the travel patterns is one of the critical issues in the transportation fields. Hence, this study has focused on the impacts of a weather condition on travel patterns of public transportations, especially when a heavy snowfall which is one of the most critical weather conditions. First, this study has figured out the most significant weather condition affecting changes of public transport ridership using weather information, card data for public transportation, mobile phone data; and then, developed a decision-tree model to determine complex inter-relations between various factors such as socio-economic indicators, transportation-related information, etc. As a result, the trip generation of public transportations in Seoul during a heavy snowfall is mostly related to average access times to subway stations by walk and the number of available parking lots and spaces. Meanwhile, the trip attraction is more related to business and employment densities in that destination.

Detection of The Real-time Weather Information from a Vehicle Black Box (차량용 블랙박스 영상에서의 실시간 기상정보 검지)

  • Kang, Ju-mi;Lee, Jaesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.320-323
    • /
    • 2014
  • Today is going with the advancement of intelligent transportation systems and traffic environment and helping to provide safe and convenient service through a mobile device work with the popularization of the vehicle black box. The traffic flow by a variety of causes is constantly changing, it is often unable to prepare the driver, depending on external factors can not be controlled by the power of the public, leading to a major accident. The system needs to pass the real-time weather data in the inter-operator to prevent this. The proposed detection algorithm weather information delivered real-time weather information for this paper. The weather condition is detected by using the contrast between the histogram of the motion of the wiper and the clear day algorithm. In general, the wiper is worked in extreme weather conditions that will have a value different contrast due to rain or snow. Situation was considered clear, snowy conditions, such as using it on a rainy situation. First, designated as ROI (Region Of Interest) of the minimum area that can be detected in order to reduce the amount of calculation for the wiper, the wiper, which was detected through the operation of the threshold Thresholding the brightness of the vehicle wiper. In addition, we distinguish the value of each meteorological situation by using contrast. Results was obtained to 80% for the snow conditions, a rainy situation.

  • PDF

Characteristics of Road Weather Elements and Surface Information Change under the Influence of Synoptic High-Pressure Patterns in Winter (겨울철 고기압 영향에서 도로 위 기상요소와 노면정보 변화 특성에 관한 연구)

  • Kim, Baek-Jo;Nam, Hyounggu;Kim, Seon-Jeong;Kim, Geon-Tae;Kim, Jiwan;Lee, Yong Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.329-339
    • /
    • 2022
  • Better understanding the mechanism of black ice occurrence on the road in winter is necessary to reduce the socio-economic damage it causes. In this study, intensive observations of road weather elements and surface information under the influence of synoptic high-pressure patterns (22nd December, 2020 and 29th January, and 25th February, 2021) were carried out using a mobile observation vehicle. We found that temperature and road surface temperature change is significantly influenced by observation time, altitude and structure of the road, surrounding terrain, and traffic volume, especially in tunnels and bridges. In addition, even if the spatial distribution of temperature and road surface temperature for the entire observation route is similar, there is a difference between air and road surface temperatures due to the influence of current weather conditions. The observed road temperature, air temperature and air pressure in Nongong Bridge were significantly different to other fixed road weather observation points.

Analysis of the Efficient Clutter Removal Method Using an Array Antenna in a Local Weather Radar (국지적 기상 레이다에서의 배열 안테나를 이용한 효율적인 클러터 제거 방법 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1180-1187
    • /
    • 2022
  • As the likelihood of occurrence of the localized microbursts or severe flooding is increased due to the unusual weather changes, it is the very urgent problem to detect these weather hazards with a local weather radar. For a local weather radar of this purpose, it is essential to detect the low altitude and the fast varying weather conditions. Therefore, the very fast update of the weather information and the efficient clutter removal is very important. To achieve this goal, the appropriate method should be applied which does not need the mechanical elevation scanning and has the capability of the efficient clutter removal. Therefore, in this paper, the usefulness of the implementation of elevational filter banks with the spatial FFT algorithm was analyzed and investigated using a simple array antenna. It is shown that the suggested method can be used for both the minimization of the ground clutter and the fast update of weather information.

Weather Barriers of Urban Air Mobility (UAM) Operations: A Case Study of the Visibility and Wind Shear around Han-River Corridor (도심항공교통(UAM) 운용 실증 노선의 기상 특성 및 시사점: 한강회랑의 시정 및 바람을 중심으로)

  • Wan-Sik Won;Yeon Myung Kim
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.413-422
    • /
    • 2023
  • Urban Air Mobility (UAM) is promising, sustainable and efficient air transportation in a metropolitan area. Korean government has recently announced operation demonstration plans as a step toward commercialization of UAM. However, there is lack of understanding on the potential impact of weather on UAM operation. We collected weather observations from Gimpo International Airport and 5 automatic weather stations (AWS) along UAM corridor of the Han-River to assess weather barriers such as low visibility, wind gust and wind shear. The results show the frequency of low visibility near the corridor fluctuated significantly from year to year depending on the concentration of fine particulate matter (PM2.5) in Seoul. The frequency of high wind speed-shift calculated using 1-minute wind observations was increased not only during the spring season (March, April, and May) but also the beginning of rainy season (Jun). In addition, a chance of high wind shear from 1-minute wind observations varied by the stations, suggesting that the condition is largely affected by topography including a river and high-rise buildings. These basic weather properties suggest that there are substantial weather barriers to UAM operations along the Han-River Corridor, while they cannot properly surveil micro-scale weather conditions in detail such as wind gust and wind shear over the corridor. Thus, this study suggests that potential barriers related to adverse weather need to be evaluated, building high-density weather observations infrastructure prior to UAM demonstration and commercialization.

Effect of Weather, Flight, and Time Conditions on Anxiety and Time Perception of Helicopter Pilots in Flight (기상, 비행 및 시간 조건이 조종 중인 헬리콥터 조종사의 불안 및 시간지각에 미치는 영향)

  • MunSeong Kim;ShinWoo Kim;Hyung-Chul O. Li
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.65-78
    • /
    • 2023
  • Aircraft are representative of human-machine systems. There is a delay between the human operation and the completion of the machine operation such as when the machine starts to operate and when the force is transmitted to the machine and completed. Time perception is an important component of timing tasks and is known to be affected by the anxiety associated with high arousal. This research verified the impact of weather, flight, and time conditions on the anxiety and time perception of in-service pilots in a virtual reality area. Weather conditions were divided into visual flight weather conditions and very low visibility conditions. Experiments 1 and 2 were performed with different flight and time conditions. In Experiment 1, time perception was measured by employing a button added to the control rod in the scenario of hovering and level flight with relatively little transformed in momentum and little delay. In Experiment 2, time perception was measured in the procedure of naturally taking off the helicopter by employing only the control stick in a takeoff scenario where there was a lot of transformation in momentum and a lot of delays. As a result of the experiment, it was reported that anxiety and heart rate increased in very low visibility conditions In particular, among all flight conditions in Experiments 1 and 2, it was reported that time was overestimated in the scenario of increased anxiety. This outcome can lead to overestimation of time under the impact of anxiety and failure of the timing task, which may lead to challenges in maneuvering and possibly lead to accidents.

Field Tracer Experiments under Severe Wether Conditions for the Validation of the Dispersion of Radioactive Materials (방사능 확산 검증을 위한 악기상 조건에서의 추적자 야외확산 실증실험)

  • Han, Moon Hee;Kim, Eun Han;Jeong, Hyo Joon;Jeong, Hae Sun;Park, Mi Sun;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.208-213
    • /
    • 2013
  • The suitability of the site criteria is a basic requirement for securing safety of nuclear power plants. The suitability should be confirmed through the estimation of environmental radiation effects at the exclusion area boundary under the severe weather conditions. In this study, field tracer experiments over short range of 1 km radius under severe weather conditions were conducted at flat area in Daejeon. Severe weather conditions are represented with stable atmospheric condition and low wind speed. In general, the condition is appeared at clean night time with weak wind. The analysis of the measured distribution of the released tracer gas shows two big differences between the results of the past experiments conducted under the favorable weather conditions. One is the difficulty of finding the typical distribution of the released tracer gas with peak concentration in the downwind direction. The other one is the appearance of the contour of the concentration of tracer gas at several hundred meters even though the gas released at 10 m height over the ground.

Effect of Sowing Dates on Agronomic Traits and Quality of Seed for Soybean [Glycine max (L.) Merr.] in Southern Area of Korea

  • Hye Rang Park;Sanjeev Kumar Dhungana;Beom Kyu Kang;Jeong Hyun Seo;Jun Hoi Kim;Su Vin Heo;Ji Yoon Lee;Won Young Han;Hong-Tai Yun;Choon Song Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.313-326
    • /
    • 2023
  • Owing to adverse weather conditions, there is a heightened focus on actively researching the regulation of the sowing date in field crop cultivation. Soybean, a prominent field crop with extensive acreage and production, is a photophilic and thermophilic crop characterized by short-day photoperiodism. Identifying the optimal sowing time is crucial for mitigating the effects of severe weather conditions on soybean yield. Precise control over the timing of soybean sowing is the key to minimizing yield reduction due to unfavorable weather conditions. Temperature, photoperiod, and their interplay are the most significant factors influencing soybean cultivation among various weather factors. We conducted an experiment using three Korean soybean cultivars with varied maturities (Hwangkeumol: early maturing and Daewonkong and Pungsannamulkong: late maturing) in 2013 and 2014. Our investigation covered aspects of soybean growth, development, yield components, isoflavones, and visual seed quality. Across all three varieties, isoflavone levels increased with later sowing dates, while other measured components exhibited significant variations based on the sowing date. This study also provides valuable insights for the selection of suitable cultivars that perform well in soybean cultivation at various durations of maturity.

Output Control Simulation of PV-AF Generation System under Various Weather Conditions (다양한 기상조건하에서의 AF기능을 갖는 태양광발전시스템의 출력제어 시뮬레이션)

  • Seong, Nak-Gueon;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1364-1366
    • /
    • 2002
  • The Photovoltaic(PV) generation system is a promising source of energy for the future. Since the need for renewable energy has been increased, the research of PV generation system has also been progressed. Recently, cost down of PV generation system has been accomplished and practical technologies of the solar energy developed, Moreover, grid connected PV generation system are becoming actual and general. Operational technology of the grid connected PV generation system is being a hot issue. Power output of PV system is directly affected by wether conditions. When AC power supply is needed, power conversion by an inverter and a MPPT control are necessary. In this paper, for stability improvement of PV generation system. Active filter(AF) function is added to PV generation system, and simulations of PV-AF system under various weather conditions are performed.

  • PDF

A Novel Simulation Method of PV Generation System using Field Data (실제 데이터를 이용한 태양광 발전시스템의 시뮬레이션)

  • Park, Min-Won;Kim, Bong-Tae;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.52-54
    • /
    • 2000
  • In PV power generation system study, huge system apparatuses are needed in order to verify the effect of system efficiency and stability considering the size of solar panels, the sort of converter types, and the load conditions and so on. And also, under the same weather and load conditions it is impossible to compare a certain MPPT control scheme to others. In this paper, in order to obtain effective solutions for the above mentioned topics, the solar cell array is simulated with it's VI characteristic equations, and the real field data of weather conditions is interfaced to EMTDC using Fortran program interface method. Consequently the simulation of PV power generation system using field data is realized in this paper, and acceptable results, which show close match between the real data of PV panel and the simulated data, were obtained.

  • PDF