Numerous water disasters have recently occurred all over the world, including South Korea, due to global climate change in recent years. As water-related disasters occur extensively and their sites are difficult for people to access, it is necessary to monitor them using satellites. The Ministry of Environment and K-water plan to launch the next-generation medium satellite No. 5 (water resource/water disaster satellite) equipped with C-band synthetic aperture radar (SAR) in 2025. C-band SAR has the advantage of being able to observe water resources twice a day at a high resolution both day and night, regardless of weather conditions. Currently, RADARSAT-2 and Sentinel-1 equipped with C-band SAR achieve the purpose of their launch and are used in various environmental fields such as forest structure detection and coastline change monitoring, as well as for unique purposes including the detection of flooding, drought and soil moisture change, utilizing the advantages of SAR. As such, this study aimed to analyze the characteristics of the next-generation medium satellite No. 5 and its application in environmental fields. Our findings showed that it can be used to improve the degree of precision of existing environmental spatial information such as the classification accuracy of land cover map in environmental field works. It also enables us to observe forests and water resources in North Korea that are difficult to access geographically. It is ultimately expected that this will enable the monitoring of the whole Korean Peninsula in various environmental fields, and help in relevant responses and policy supports.
This paper evaluates precipitation forecast skill of Global/Regional Integrated Model system (GRIMs) over South Korea in a boreal winter from December 2013 to February 2014. Three types of precipitation are classified based on development mechanism: 1) convection type (C type), 2) low pressure type (L type), and 3) orographic type (O type), in which their frequencies are 44.4%, 25.0%, and 30.6%, respectively. It appears that the model significantly overestimates precipitation occurrence (0.1 mm d-1) for all types of winter precipitation. Objective measured skill scores of GRIMs are comparably high for L type and O type. Except for precipitation occurrence, the model shows high predictability for L type precipitation with the most unbiased prediction. It is noted that Equitable Threat Score (ETS) is inappropriate for measuring rare events due to its high dependency on the sample size, as in the case of Critical Success Index as well. The Symmetric Extreme Dependency Score (SEDS) demonstrates less sensitivity on the number of samples. Thus, SEDS is used for the evaluation of prediction skill to supplement the limit of ETS. The evaluation via SEDS shows that the prediction skill score for L type is the highest in the range of 5.0, 10.0 mm d-1 and the score for O type is the highest in the range of 1.0, 20.0 mm d-1. C type has the lowest scores in overall range. The difference in precipitation forecast skill by precipitation type can be explained by the spatial distribution and intensity of precipitation in each representative case.
현재 자율주행차량은 테스트 이후 상용화를 눈앞에 두고 있다. 그러나 아직 자율주행차량이 완벽히 상용화되지 않았음에도 81건의 사고가 발생했으며, 사고를 피하기 위한 차량의 주행 방식은 LiDAR에 많이 의존하고 있다. 현재 상용화된 3레벨 자율주행차량이 4레벨 자율주행차량으로 발전하기 위해서는 기존에 수집되는 정보보다 더 많은 정보를 수집해야만 한다. 따라서 본 논문에서는 기존의 자율주행차량에서 수집하는 정보인 도로 정보, 기상정보를 포함하여 차량이 주행 중인 도로의 거칠기와 자기 자신 및 주변 차량의 탑승객 상태를 정확하게 인식하여 차량이 처한 위기 상황을 정확하게 계산하는 Driving Situation Judgment System (DSJS)을 제안한다. DSJS의 PDM에 대한 실험 결과, PDM은 기존 차량의 탑승객 인식 시스템보다 평균적으로 15.52% 더 정확하게 탑승객을 분류할 수 있었다. 본 연구는 기존 3단계 자율주행차량이 수집하는 데이터보다 더 다양한 종류를 수집하여 4단계 자율주행차량을 달성하는 기초연구가 될 수 있다.
본 논문에서는 사용자의 감정 분석에 따른 향을 추천하는 스마트 미러 시스템을 제안한다. 본 논문은 자연어 처리 중 임베딩 기법(CounterVectorizer와 TF-IDF 기법), 머신러닝 분류 기법 중 최적의 모델(DecisionTree, SVM, RandomForest, SGD Classifier)을 융합하여 시스템을 구축하고 그 결과를 비교한다. 실험 결과, 가장 높은 성능을 보이는 SVM과 워드 임베딩을 파이프라인 기법으로 감정 분류기 모델에 적용한다. 제안된 시스템은 Flask 웹 프레임워크를 이용하여 웹 서비스를 제공하는 개인감정 분석 기반 향 추천 미러를 구현한다. 본 논문은 Google Speech Cloud API를 이용하여 사용자의 음성을 인식하고 STT(Speech To Text)로 음성 변환된 텍스트 데이터를 사용한다. 제안된 시스템은 날씨, 습도, 위치, 명언, 시간, 일정 관리에 대한 정보를 사용자에게 제공한다.
Md. Ashikuzzaman;Wasim Akram;Md. Mydul Islam Anik;Taskeed Jabid;Mahamudul Hasan;Md. Sawkat Ali
International Journal of Computer Science & Network Security
/
제23권8호
/
pp.95-100
/
2023
Due to Traffic accidents people faces health and economical casualties around the world. As the population increases vehicles on road increase which leads to congestion in cities. Congestion can lead to increasing accident risks due to the expansion in transportation systems. Modern cities are adopting various technologies to minimize traffic accidents by predicting mathematically. Traffic accidents cause economical casualties and potential death. Therefore, to ensure people's safety, the concept of the smart city makes sense. In a smart city, traffic accident factors like road condition, light condition, weather condition etcetera are important to consider to predict traffic accident severity. Several machine learning models can significantly be employed to determine and predict traffic accident severity. This research paper illustrated the performance of a hybridized neural network and compared it with other machine learning models in order to measure the accuracy of predicting traffic accident severity. Dataset of city Leeds, UK is being used to train and test the model. Then the results are being compared with each other. Particle Swarm optimization with artificial neural network (PSO-ANN) gave promising results compared to other machine learning models like Random Forest, Naïve Bayes, Nearest Centroid, K Nearest Neighbor Classification. PSO- ANN model can be adopted in the transportation system to counter traffic accident issues. The nearest centroid model gave the lowest accuracy score whereas PSO-ANN gave the highest accuracy score. All the test results and findings obtained in our study can provide valuable information on reducing traffic accidents.
Characteristics of downslope windstorm (DW) has been examined mainly based on 1-min average wind and the other meteorological conditions in the Yeongdong region for 2000~2020. First, a classification procedure for the downslope windstorm is proposed using surface wind speed (greater than 99 percentile), 1-hour longevity of strong wind (SW), westerly wind direction, low humidity (less than 20 percentile), and leeside warming. The number of DW days satisfying the proposed criteria is 221 (2.9% of total days and 47.5% of SW days) while the number of SW days is 465 (6.1% of total days) for 2000~2020. The occurrences of both SW and DW shows distinctive annual variation with its peak in April. In addition, mean wind speed of DW days is 8.2 m s-1 with its duration of 2 hr 30 min and relative humidity of 28% at Gangneung. An episode (7 May 2021) was selected by applying the proposed criteria to SW days of 2021. The sounding shows that the layer of wind speed greater than 25 m s-1 was lowered down to 925 hPa at Gangneung (leeside) relative to 850 hPa at Hoengseong (Wonju), in the afternoon along with significant warming and drying. Froude numbers of Wonju and Gangneung for the DW events were increased 4 and 5 times greater than those of normal days, respectively. This kind of DW long-term statistics in the leeside of the mountains is thought to build a foundation of further understanding DW mechanism.
본 연구는 기상과 수질 측정망 자료를 사용하여 남한강 내 강천보와 이포보가 건설되기 전 후 기상, 수질 농도, 유량 및 조류 예보 발생 패턴의 변화를 구명하기 위하여 수행되었다. 각 보의 건설 전 후의 구분은 Ward의 방법을 통한 군집분석으로 분석기간을 구분하였고, 또한 Chl-a(조류)와 기상, 수질 및 유량 등의 요인과의 상관분석을 통해 Chl-a(조류)의 발생량에 영향을 미치는 요인을 파악하였다. 2005년부터 2015년까지의 관련 자료를 기준으로 총 12개 요인(수온, 강수량, 일조시간, pH, DO, BOD, COD, T-N, $NH_3-N$, $NO_3-N$, T-P, $PO_4-P$)을 군집분석한 결과, 보 건설 전의 군집은 2006-2007년이며 보 건설 후의 군집은 2012-2013년으로 2개의 군집으로 분류되었다. 보 건설 전에 비해서 보 건설 후의 강천보 BOD는 II에서 Ia 등급으로 개선되었고, 이포보 BOD는II-III에서 Ia-II등급으로 개선되었다. 또한 전반적으로 보 건설 후에 T-P와 T-N 농도도 개선된 것으로 나타났다. 강천보와 이포보에서 Chl-a(조류) 농도는 보 건설 전보다 보 건설 후에 감소하였으나, 이포보가 건설된 후에는 보 건설로 인해 체류시간, 수온 및 일조시간이 증가하여 조류 예보 발생 횟수가 보 건설 전 9회에서 보 건설 후 15회로 증가하였다. 기상, 수질 및 유량요인과 Chl-a의 상관분석 결과, 보 건설 후 강천보에서 Chl-a는 BOD(0.579) > COD(0.413) > 기온(0.237) 순으로 양의 상관 값이 크게 나타난 반면, $NO_3-N$(-0.344) > T-N(-0.293)의 순으로 음의 상관 값이 큰 것으로 나타났다. 또한, 보 건설 후 이포보에서 Chl-a는 BOD(0.795) > pH(0.581) > 수온(0.422)의 순으로 양의 상관 값이 크게 나타난 반면, $NO_3-N$(-0.457) > T-N(-0.371) > $NH_3-N$(-0.326) > $PO_4-P$(-0.288) > 유량(-0.213)의 순으로 음의 상관 값이 큰 것으로 나타났다. 이포보의 수질이 전반적으로 개선되었음에도 불구하고 조류 예보가 발생한 횟수가 증가된 것은 보 건설에 따른 하천 수질환경 변화보다 보 건설로 인해 하천의 흐름이 변화하여 유속이 감소하고 체류시간과 수온이 증가된 영향이 큰 것으로 판단된다
우리나라 주요 밭작물의 하나인 콩 재배에서 기상에 맞는 재배 양식 개발이 필요함에 따라 콩 작황시험 생육 및 수량 조사 데이터를 이용해 콩에 영향을 끼치는 기상요소를 추출하고 재배지역을 구분하였다. 1. 밀양과 수원지역의 콩 10년 동안의 작황시험 결과와 기상자료 간의 상관분석을 통해 콩에 영향을 미치는 기상요소를 분석한 결과, 생육 특성과 영양생장기 기상과의 상관관계는 일교차, 강수량과 최저온도에서 높게 나타났으며, 수량특성과 생식생장기 기상과는 일교차, 강수량, 최고온도에서 유의한 상관관계를 보였다. 2. 추출한 기상요소와 위도, 해발고도를 포함해 콩의 재배지역 구분을 위해 k-means clustering을 실시한 결과, 지역은 세 가지로 나누어졌으며, zone 1은 중부내륙지역과 경기도 남부지역, zone 2는 서해안 남부지역, 동해안 남부지역과 남해지역, zone 3은 경기도 동부 일부지역과 강원도 및 해발고도가 높은 지역이 포함되었다. 3. 세 가지 지역 중 위도의 범위가 넓은 zone 1을 세 가지 지역으로 세분한 결과, Zone 1-1은 다른 두 지역에 비해 위도가 낮았으며, 강수량이 적은 특징을 가진다. Zone 1-2는 다른 두 지역에 비해 짧은 일조시간과 높은 기온이 특징적이었다. Zone 1-3은 위도 상으로는 두 지역의 중앙에 위치해 있으며, 일조 시간이 길면서 일교차가 큰 특징이었다. 4. 본 연구에서 콩 재배를 위한 한국의 재배지역은 크게 3가지로 구분되었으며, 작게는 5가지 지역으로 구분되었다. 기상 요소 및 생육 정보를 기반으로 한 재배지역을 구분함으로써 국내 콩 생산에 기여할 수 있는 새로운 정보를 제공하였다.
한반도 에어로졸 라이다 관측 네트워크(Korea Aerosol Lidar Observation Network; KALION)의 라이다 관측자료 처리 및 실시간 표출을 위한 표준 알고리즘을 개발하였다. KALION 표준 알고리즘은 라이다 관측으로부터 얻어진 후방산란강도와 편광소멸도 자료를 이용하여 (1) 에어로졸과 구름 구분, (2) 에어로졸 유형 구분, (3) 에어로졸 소산계수 그리고 (4) 에어로졸 질량농도를 산출하는 단계로 구성이 되어 있다. 에어로졸의 유형은 후방산란강도와 편광소멸도 자료에 근거하여, (대륙 기원) 청정기단 에어로졸(clean continental aerosol), 황사(dust aerosol) 그리고 오염 입자(polluted continental/urban pollution aerosol)로 구별된다. 에어로졸 소산계수에 필요한 라이다 상수는 약 9년간의 라이다와 스카이 라디오미터 자료로부터 도출된 63.31 sr을, 에어로졸 질량소산효율은 약 9년간의 라이다와 기상청 Particulate Matter($PM_{10}$) 질량농도 자료를 이용하여 도출된 $3.36m^2\;g^{-1}$ (황사는 $1.39m^2\;g^{-1}$)을 적용한다. 2015년 3월 28일부터 30일까지 라이다 관측 사례(서울 관악)에서 KALION 표준 알고리즘을 통해 산출된 에어로졸 유형 구분, 특히 황사 판별 결과는 기상청의 황사 보고와 잘 일치하였으며, 2006년 6월부터 약 9년 동안의 라이다 관측자료로부터 산출된 에어로졸 질량농도 역시 지상 $PM_{10}$ 농도와 약 $3{\mu}g\;m^{-3}$ 내에서 잘 일치하였다. 향후 에어로졸의 유형에 따른 서로 다른 라이다 상수 및 에어로졸 질량소산효율 적용 알고리즘, 빙정 구름(ice cloud)과 물방울 구름(water droplet cloud) 구분 알고리즘, 그리고 운저 고도와 혼합고 판별 알고리즘을 개발할 계획에 있다.
목 적 : 경남권역 응급의료센터인 마산삼성병원을 내원한 소아청소년 응급환자들을 후향적 방법으로 내원 양상을 분석하여 향후에 지역 응급 진료의 질 향상에 기여하고자 본 연구를 시행하였다. 방 법 : 2007년 1월 1일부터 2008년 12월 31일까지 2년 동안 마산삼성병원 응급센터로 내원하였던 19세 미만 소아청소년 환자 14,065명 의 의무 기록지를 통해 연구하였다. 결 과 : 남녀비는 1.5:1로 남자가 더 많았고, 연령은3세 미만이 49.6%였다. 내원 환자는 5월, 일요일, 하루 중에는 20시에서 21시 사이가 가장 많았다. 기후와의 관련에서 하루 내원 환자 수는 황사가 있을 때 3배, 맑은 날 또는 10 mm 미만의 비가 내린 경우는 10 mm 이상 비가 내렸을 때보다 4배 더 많았다. 주된 진료담당과는 전체의 62.0%가 소아과였다. ICD-10 질병 분류에서 손상 중독 및 외인에 의한 경우 22.4%, 단일 증상 및 질환으로는 발열이 13.1%로 가장 많았다. 최종 진료 처리 형태로는 퇴원이 73.8%, 입원은 25.7%였다. 15세 이상 19세 미만의 청소년인 경우 전체 연령과 다른 점은 응급의학에서 50.0%를 담당하였고, 손상 중독 및 외인에 의한 경우 36.9%, 단일 증상 질환으로는 복통이 10.9%로 가장 많았다. 또 최종 입원한 경우는 30.6%로 전체 연령보다는 더 많았고 내원 환자수가 일교차가 클수록 비례하여 더 많았다. 결 론 : 응급센터를 내원한 소아 환자 수는 남자, 3세 미만, 5월, 일요일, 20-21시 사이, 황사가 없는 맑은 날, 손상 중독 및 외인에 의한 경우 및 발열인 경우가 가장 많았다. 청소년이 소아환자와 다른 점은 일교차가 클 수록, 복통으로 내원하는 경우가 더 많았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.