DOI QR코드

DOI QR Code

Evaluation of Predictability of Global/Regional Integrated Model System (GRIMs) for the Winter Precipitation Systems over Korea

한반도 겨울철 강수 유형에 따른 전지구 수치모델(GRIMs) 예측성능 검증

  • 연상훈 ((재)차세대수치예보모델개발사업단) ;
  • 서명석 (공주대학교) ;
  • 이주원 (탑플러스영수전문학원) ;
  • 이은희 ((재)차세대수치예보모델개발사업단)
  • Received : 2022.09.14
  • Accepted : 2022.12.05
  • Published : 2022.12.31

Abstract

This paper evaluates precipitation forecast skill of Global/Regional Integrated Model system (GRIMs) over South Korea in a boreal winter from December 2013 to February 2014. Three types of precipitation are classified based on development mechanism: 1) convection type (C type), 2) low pressure type (L type), and 3) orographic type (O type), in which their frequencies are 44.4%, 25.0%, and 30.6%, respectively. It appears that the model significantly overestimates precipitation occurrence (0.1 mm d-1) for all types of winter precipitation. Objective measured skill scores of GRIMs are comparably high for L type and O type. Except for precipitation occurrence, the model shows high predictability for L type precipitation with the most unbiased prediction. It is noted that Equitable Threat Score (ETS) is inappropriate for measuring rare events due to its high dependency on the sample size, as in the case of Critical Success Index as well. The Symmetric Extreme Dependency Score (SEDS) demonstrates less sensitivity on the number of samples. Thus, SEDS is used for the evaluation of prediction skill to supplement the limit of ETS. The evaluation via SEDS shows that the prediction skill score for L type is the highest in the range of 5.0, 10.0 mm d-1 and the score for O type is the highest in the range of 1.0, 20.0 mm d-1. C type has the lowest scores in overall range. The difference in precipitation forecast skill by precipitation type can be explained by the spatial distribution and intensity of precipitation in each representative case.

Keywords

Acknowledgement

이 논문은 주저자의 2018년 석사학위 논문을 바탕으로 작성되었습니다. 이 연구 과정에서 당시 다양한 의견과 검증 방법론을 제시하고 도움을 주셨던 (재)한국형수치예보모델개발사업단의 예보검증팀원들에게 감사의 마음을 전합니다.

References

  1. Barry, R. G., and R. J. Chorley, 2003: Atmosphere, Weather and Climate, 8th ed. Routledge, 101-103 pp.
  2. Casati, B., and Coauthors, 2008: Forecast verification: current status and future directions. Meteorol. Appl., 15, 3-18. https://doi.org/10.1002/met.52
  3. Chang, E. C., 2021: Discussion on differences between public and academic understanding of precipitation prediction process and accuracy, In: Proceedings of the Korean Meteorological Society, online conference, 198 pp.
  4. Cheong, S.-H., K.-Y. Byun, and T.-Y. Lee, 2006: Classification of snowfalls over the Korean Peninsula based on developing mechanism. Atmosphere, 16, 33-48.
  5. Choi, H.-J., and S. Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res., 120, 12445-12457, doi:0.1002/2015JD024230. https://doi.org/10.1002/2015JD024230
  6. Chun, H. Y., and J. J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 3299-3310. https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2
  7. Ebert, E. E., U. Damrath, W. Wergen, and M. E. Baldwin, 2003: The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Am. Meteorol. Soc., 84, 481-492. https://doi.org/10.1175/BAMS-84-4-481
  8. ECMWF, 2011: Equitable Threat Score: 6.4 Relative skill of IFS models. Forecast user guide. European Centre for Medium-Range Weather Forecasts. [Available online at https://confluence.ecmwf.int/display/FUG/Equitable+Threat+Score].
  9. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos., 108, 8851.
  10. Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: report of the eighth prospectus development team, US Weather Research Program. Bull. Am. Meteorol. Soc., 79, 285-299. https://doi.org/10.1175/1520-0477(1998)079<0285:QPFROT>2.0.CO;2
  11. Gallus, W. A. Jr., and J. F. Bresch, 2006: Comparison of impacts of WRF dynamic core, physics package, and initial conditions on warm season rainfall forecasts. Mon. Wea. Rev., 134, 2632-2641. https://doi.org/10.1175/mwr3198.1
  12. Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520-533, doi:10.1175/WAF-D-10-05038.1.
  13. Hogan, R. J., E. J. O'Connor, and A. J. Illingworth, 2009: Verification of cloud-fraction forecasts. Q. J. R. Meteorol. Soc., 135, 1494-1511. https://doi.org/10.1002/qj.481
  14. Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:aratim>2.0.co;2
  15. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318- 2341. https://doi.org/10.1175/mwr3199.1
  16. Hong, S. Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q. J. R. Meteorol. Soc., 136, 1481-1496, doi:10.1002/qj.665.
  17. Hong, S. Y., and Coauthors, 2013: The global/regional integrated model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219-243, doi:10.1007/s13143-013-0023-0.
  18. Hong, S. Y., and Coauthors, 2018: The Korean integrated model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos. Sci., 54, 267-292, doi:10.1007/s13143-018-0028-9.
  19. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103. https://doi.org/10.1029/2008jd009944
  20. Korea Meteorological Administration [KMA], 2011: A Hand-Held Forecasting Technique, KMA, 12 pp (in Korean).
  21. Lee, H., and T.-Y. Lee, 1994: The governing factors for heavy snowfalls in Youngdong area. Asia-Pac. J. Atmos. Sci., 30, 197-218 (in Korean with English abstract).
  22. Lim, K.-S., and S.-Y. Hong, 2007: Numerical simulation of heavy snowfall over the Ho-Nam province of Korea in December 2005. J. Korean Meteorol. Soc., 43, 161-173.
  23. Lim, K. S. S., S. Y. Hong, J. H. Yoon, and J. Han, 2014: Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolution. Wea. Forecasting, 29, 1143-1154, doi:10.1175/WAF-D-13-00143.1
  24. Lim, Y.-J., W. Choi, B. Y. Koo, Choi, H.-J., Y. C. Kwon and J. S. Ko, 2022: Analysis and implications of prediction characteristics of winter precipitation in 2021, In: Proceedings of the Korean Meteorological Society, 19-21 April 2022.
  25. Olson, D. A., N. W. Junker, and B. Korty, 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10, 498-511. https://doi.org/10.1175/1520-0434(1995)010<0498:EOYOQP>2.0.CO;2
  26. Park, B. J., 2013: (Column) Interview at a research site - Young-Jun, Kim. Director of Korea Institute of Atmospheric Prediction Systems, The Science & Technology, 525, 86-89 (in Korean).
  27. Park, R.-S., J.-H. Chae, and S.-Y. Hong, 2016: A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Wea. Rev., 144, 1219-1229, doi:10.1175/MWR-D-15-0273.1.
  28. Sanders, F., 1986: Trends in skill of Boston forecasts made at MIT, 1966-84. Bull. Am. Meteorol. Soc., 67, 170-176.
  29. Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1.
  30. Sud, Y. C., J. Shukla, and Y. Mintz, 1988: Influence of land surface roughness on atmospheric circulation and precipitation: a sensitivity study with a general circulation model. J. Appl. Meteorol., 27, 1036-1054. https://doi.org/10.1175/1520-0450(1988)027<1036:IOLSRO>2.0.CO;2