• 제목/요약/키워드: Weather Research and Forecasting model

검색결과 219건 처리시간 0.025초

FLASH FLOOD FORECASTING USING ReMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART I : MODEL DEVELOPMENT

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.113-122
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

  • PDF

FLASH FLOOD FORECASTING USING REMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART II : MODEL APPLICATION

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.123-134
    • /
    • 2002
  • A developed Quantitative Flood Forecasting (QFF) model was applied to the mid-Atlantic region of the United States. The model incorporated the evolving structure and frequency of intense weather systems of the study area for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters associated with synoptic atmospheric conditions as Input. Here, we present results from the application of the Quantitative Flood Forecasting (QFF) model in 2 small watersheds along the leeward side of the Appalachian Mountains in the mid-Atlantic region. Threat scores consistently above 0.6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 40% and up to 55 % were obtained.

  • PDF

기상 예보 데이터와 일사 예측 모델식을 활용한 실시간 에너지 수요예측 (Real-time Energy Demand Prediction Method Using Weather Forecasting Data and Solar Model)

  • 곽영훈;천세환;장철용;허정호
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.310-316
    • /
    • 2013
  • This study was designed to investigate a method for short-term, real-time energy demand prediction, to cope with changing loads for the effective operation and management of buildings. Through a case study, a novel methodology for real-time energy demand prediction with the use of weather forecasting data was suggested. To perform the input and output operations of weather data, and to calculate solar radiation and EnergyPlus, the BCVTB (Building Control Virtual Test Bed) was designed. Through the BCVTB, energy demand prediction for the next 24 hours was carried out, based on 4 real-time weather data and 2 solar radiation calculations. The weather parameters used in a model equation to calculate solar radiation were sourced from the weather data of the KMA (Korea Meteorological Administration). Depending on the local weather forecast data, the results showed their corresponding predicted values. Thus, this methodology was successfully applicable to anywhere that local weather forecast data is available.

월령단지 풍력발전 예보모형 개발에 관한 연구 (A Study on Development of a Forecasting Model of Wind Power Generation for Walryong Site)

  • 김현구;이영섭;장문석;경남호
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a forecasting model of wind speed at Walryong Site, Jeju Island is presented, which has been developed and evaluated as a first step toward establishing Korea Forecasting Model of Wind Power Generation. The forecasting model is constructed based on neural network and is trained with wind speed data observed at Cosan Weather Station located near by Walryong Site. Due to short period of measurements at Walryong Site for training statistical model Gosan Weather Station's long-term data are substituted and then transplanted to Walryong Site by using Measure-Correlate-Predict technique. One to three-hour advance forecasting of wind speed show good agreements with the monitoring data of Walryong site with the correlation factors 0.96 and 0.88, respectively.

Advanced Forecasting Approach to Improve Uncertainty of Solar Irradiance Associated with Aerosol Direct Effects

  • Kim, Dong Hyeok;Yoo, Jung Woo;Lee, Hwa Woon;Park, Soon Young;Kim, Hyun Goo
    • 한국환경과학회지
    • /
    • 제26권10호
    • /
    • pp.1167-1180
    • /
    • 2017
  • Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by $50-200W\;m^{-2}$ compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF-CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1-3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the $PM_{10}$ size fraction, were over $100{\mu}g\;m^{-3}$. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.

제주 실시간 풍력발전 출력 예측시스템 개발을 위한 개념설계 연구 (A study on the Conceptual Design for the Real-time wind Power Prediction System in Jeju)

  • 이영미;유명숙;최홍석;김용준;서영준
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2202-2211
    • /
    • 2010
  • The wind power prediction system is composed of a meteorological forecasting module, calculation module of wind power output and HMI(Human Machine Interface) visualization system. The final information from this system is a short-term (6hr ahead) and mid-term (48hr ahead) wind power prediction value. The meteorological forecasting module for wind speed and direction forecasting is a combination of physical and statistical model. In this system, the WRF(Weather Research and Forecasting) model, which is a three-dimensional numerical weather model, is used as the physical model and the GFS(Global Forecasting System) models is used for initial condition forecasting. The 100m resolution terrain data is used to improve the accuracy of this system. In addition, optimization of the physical model carried out using historic weather data in Jeju. The mid-term prediction value from the physical model is used in the statistical method for a short-term prediction. The final power prediction is calculated using an optimal adjustment between the currently observed data and data predicted from the power curve model. The final wind power prediction value is provided to customs using a HMI visualization system. The aim of this study is to further improve the accuracy of this prediction system and develop a practical system for power system operation and the energy market in the Smart-Grid.

기상예보정보를 활용한 월 댐유입량 예측 (Monthly Dam Inflow Forecasts by Using Weather Forecasting Information)

  • 정대명;배덕효
    • 한국수자원학회논문집
    • /
    • 제37권6호
    • /
    • pp.449-460
    • /
    • 2004
  • 본 논문에서는 월 댐유입량을 예측하는데 있어서 기상예보정보를 활용한 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)을 이용하여 모형을 구성하였다. ANFIS의 공간분할에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy Clustering)방법 중 하나인 차감 클러스터링(Subtractive Clustering)을 사용하였다. 또한 본 연구에서는 정성적인 기상예보정보를 정량화 시키는 방법을 제안하였다. AMFIS를 이용하여 월 댐유입량 예측 시, 관측자료만으로 구성된 모형에 의한 예측결과와 관측자료에 기상예보정보를 더하여 구성된 모형에 의한 예측결과를 비교하였다. 그 결과 ANFIS는 기상예보정보를 활용하여 댐유입량을 예측했을 때가 관측자료만으로 예측했을 때보다 예측능력이 더욱 정확함을 보였다.

Predictability Experiments of Fog and Visibility in Local Airports over Korea using the WRF Model

  • Bang, Cheol-Han;Lee, Ji-Woo;Hong, Song-You
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E2호
    • /
    • pp.92-101
    • /
    • 2008
  • The objective of this study is to evaluate and improve the capability of the Weather Research and Forecasting (WRF) model in simulating fog and visibility in local airports over Korea. The WRF model system is statistically evaluated for the 48-fog cases over Korea from 2003 to 2006. Based on the 4-yr evaluations, attempts are made to improve the simulation skill of fog and visibility over Korea by revising the statistical coefficients in the visibility algorithms of the WRF model. A comparison of four existing visibility algorithms in the WRF model shows that uncertainties in the visibility algorithms include additional degree of freedom in accuracy of numerical fog forecasts over Korea. A revised statistical algorithm using a linear-regression between the observed visibility and simulated hydrometeors and humidity near the surface exhibits overall improvement in the visibility forecasts.

기계학습의 LSTM을 적용한 지상 기상변수 예측모델 개발 (Development of Surface Weather Forecast Model by using LSTM Machine Learning Method)

  • 홍성재;김재환;최대성;백강현
    • 대기
    • /
    • 제31권1호
    • /
    • pp.73-83
    • /
    • 2021
  • Numerical weather prediction (NWP) models play an essential role in predicting weather factors, but using them is challenging due to various factors. To overcome the difficulties of NWP models, deep learning models have been deployed in weather forecasting by several recent studies. This study adapts long short-term memory (LSTM), which demonstrates remarkable performance in time-series prediction. The combination of LSTM model input of meteorological features and activation functions have a significant impact on the performance therefore, the results from 5 combinations of input features and 4 activation functions are analyzed in 9 Automated Surface Observing System (ASOS) stations corresponding to cities/islands/mountains. The optimized LSTM model produces better performance within eight forecast hours than Local Data Assimilation and Prediction System (LDAPS) operated by Korean meteorological administration. Therefore, this study illustrates that this LSTM model can be usefully applied to very short-term weather forecasting, and further studies about CNN-LSTM model with 2-D spatial convolution neural network (CNN) coupled in LSTM are required for improvement.

Maryblyt 기반 참다래 꽃썩음병 예측모형 개발 (Development of a Maryblyt-based Forecasting Model for Kiwifruit Bacterial Blossom Blight)

  • 김광형;고영진
    • 식물병연구
    • /
    • 제21권2호
    • /
    • pp.67-73
    • /
    • 2015
  • P. syringae pv. syringae에 의해 발생하는 참다래 꽃썩음병은 개화기 전후의 기상조건에 영향을 크게 받는다. 지금까지 기상조건과 꽃썩음병 발생의 상관관계를 밝힌 연구들은 많았지만, 이를 활용해 꽃썩음병의 감염 위험도를 나타낼 수 있는 예측모형은 개발되지 않았다. 본 연구에서는 기존 정보를 조사하고 꽃썩음병의 병원생태와 유사한 화상병 예측모형인 Maryblyt모형을 기반으로 참다래 꽃썩음병 예측모형인 Pss-KBB Risk Model을 개발하였다. 비교평가를 통한 검증 결과, Pss-KBB Risk Model은 각각 온도와 강수 정보만을 이용하는 개화전 평균온도 모형과 강우일수 모형에 비해 실제 과수원의 병해 발생정도를 더 잘 모의하는 것으로 나타났다. 따라서 Pss-KBB Risk Model과 기상예보자료를 활용해 꽃썩음병의 발병 위험도를 예측하여 꽃썩음병에 대한 적기적량 방제가 가능할 것으로 판단된다.