• 제목/요약/키워드: Weather Intensity

검색결과 293건 처리시간 0.017초

Sentinel-1 SAR 영상을 이용한 주성분분석 및 K-means Clustering 기반 산불 탐지 (Detection of Forest Fire Damage from Sentinel-1 SAR Data through the Synergistic Use of Principal Component Analysis and K-means Clustering)

  • 이재세;김우혁;임정호;권춘근;김성용
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1373-1387
    • /
    • 2021
  • 산불은 지표 에너지 균형, 사회 및 환경에 중대한 위협을 미치며, 사회경제적 손실을 일으킨다. 한편, 현재까지 널리 사용되고 있는 다중분광 위성 영상 기반 산불 피해 탐지 알고리즘은 구름으로 인한 반사도 오염으로 인해 시의적절한 산불 정보를 얻기 어려운 문제가 있다. 따라서 본 연구에서는 구름에 영향을 받지 않는 유럽우주국의 Sentinel-1 SAR (Synthetic Aperture Radar) 자료로부터 2019년 4월 초에 발생한 남한 강원도의 강릉·동해, 고성·속초 및 인접한 북한의 두 산불 발생 지역을 대상으로 주성분분석(Principal Component Analysis; PCA)을 포함하는 일련의 전 처리 및 K-means clustering을 이용하여 산불 피해 면적을 탐지하였다. 추정된 산불 면적은 국립산림과학원에서 남한의 두 산불에 대해 제공한 산불 피해 면적 및 강도 참조자료 및 산불 피해 탐지에 널리 사용되는 dNBR (differenced Normalized Burn Ratio)을 사용하여 검증하였다. 국립산림과학원의 참조자료 기반 검증에서 강릉·동해와 고성·속초 산불에 대해 평균 약 86%의 정확도를 보였다. dNBR을 사용한 검증에서는 남한 및 북한의 지역 모두에 대해 평균 약 84%의 정확도를 보였다. 이때, 산불 강도가 강할수록 산불 면적 탐지 성능이 높고 반대로 산불 강도가 약할수록 산불 면적 탐지 성능이 낮은 것을 확인할 수 있었다. 본 연구를 통해 검증된 SAR 영상을 이용한 PCA 및 K-means clustering 기반 탐지 알고리즘이 추후 구름의 영향이 크고 작은 산불이 빈번하게 발생하는 한반도에 대하여 신속한 산불 피해 면적 탐지에 활용될 수 있을 것으로 기대된다.

드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토 (Evaluation of Antenna Pattern Measurement of HF Radar using Drone)

  • 정다운;김재엽;송규민
    • 한국해안·해양공학회논문집
    • /
    • 제35권6호
    • /
    • pp.109-120
    • /
    • 2023
  • 광해역의 표층 해수유동을 준 실시간으로 측정하는 장비인 해양 고주파 레이다(High Frequency Radar, HFR)는 특정 전파대역(HF)의 주파수를 해수면으로 발사하고 후방으로 산란된 전파를 분석하여 표층 유속 벡터를 측정한다(Crombie, 1955; Barrick, 1972). 본 연구에서 사용되는 Codar사의 Seasonde HF radar의 경우, 무지향성 안테나에서 송·수신한 전파의 브래그 피크(Bragg peak)의 강도와 다중신호분류(Mutiple Signal Classification, MUSIC) 알고리즘을 통하여 방사형 해류(Radial Vector)의 속도와 위치를 결정하게 된다. 이때 생산된 해류는 관측 전파 수신 환경의 특성이 고려되지 않은 이상적인 전파환경(Ideal Pattern)이 적용된 자료로써 이를 보정하기 위하여 안테나 패턴 측정(Antenna Pattern Measurement, APM)을 시행하여 보정된 방사해류장(Measured Radial Vector)을 계산하게 된다. APM의 관측원리는 안테나로부터 수신되는 각 위치별 신호 강도값을 측정하여 해류의 위치 및 위상 정보를 수정하는 것으로 일반적으로 선박에 안테나를 설치하여 실험을 진행한다. 하지만 선박을 활용할 시, 기상조건과 해양 상황 등 다양한 환경에 의해 최적의 APM 결과를 산출하기까지 많은 제약이 따른다. 따라서 APM 실험에 대하여 해상 상황에 대한 의존도를 낮추고 경제적인 효율성을 높이기 위하여 무인항공기인 드론을 이용한 APM 활용 가능성을 검토하였다. 본 연구에서는 전남 완도군 당사리 당사도등대에 설치된 고주파레이다를 활용하여 선박을 활용한 APM 실험과 드론을 활용한 APM 실험을 진행하였으며 선박과 드론으로 관측된 결과가 적용된 방사형 해류와 계류된 고정부이를 활용하여 그 결과를 비교 분석하였다.

영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로 (Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface)

  • 장소영;박영빈;권재엽;이상헌;김태호
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1353-1369
    • /
    • 2023
  • 해상에서는 재난·재해 사고가 발생했을 시 바람 등에 의한 기상영향과 해류, 조류와 같은 해상영향에 의해 피해 규모가 달라지게 되며, 빠른 현장 파악을 통해 적합한 방제 방안을 세워 피해 규모를 최소화할 의무가 있다. 특히, 해상에 유출되는 오염물질 중 상대적으로 낮은 점도와 표면장력으로 인해 해수면에서 얇은 막으로 존재하는 오염물질은 육안으로 식별하기 어렵다. 따라서 본 연구에서는 현장에서 쉽게 활용 가능한 촬영장비를 활용하여 RGB 이미지에서 해수면의 부유성 오염물질을 탐지하는 알고리즘을 개발하고, 실 해역에서 획득된 입력자료를 활용하여 알고리즘의 성능을 평가하고자 한다. 개발된 알고리즘은 영상 강화 기법을 활용하여 오염물질과 일반 해수면의 강도값 대비를 향상시키고, 히스토그램(Histogram) 분석을 통해 배경 임계값을 찾아 오염물질 이외의 부유물질을 제거하여 최종적으로 오염물질을 분류한다. 본 연구에서는 개발된 알고리즘의 성능평가를 위해서 대체물질을 이용한 실 해역 테스트를 수행하였으며, 대부분의 부유성 해양오염물질은 탐지되었으나 파도가 강한 곳에서는 오탐지 영역이 발생하였다. 그러나 기존 알고리즘에서 단일 임계값을 사용한 탐지 방법보다 약 3배 이상의 개선된 탐지 결과를 보여준다. 본 연구개발 결과를 통해 기존 현장에서 육안으로 식별이 어려웠던 부유성 해양오염물질을 탐지함으로써 현장에서의 방제 대응 활동에 유용하게 사용될 것으로 기대된다.