• 제목/요약/키워드: Weather Forecasting Data

검색결과 352건 처리시간 0.018초

Very Short-Term Wind Power Ensemble Forecasting without Numerical Weather Prediction through the Predictor Design

  • Lee, Duehee;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2177-2186
    • /
    • 2017
  • The goal of this paper is to provide the specific forecasting steps and to explain how to design the forecasting architecture and training data sets to forecast very short-term wind power when the numerical weather prediction (NWP) is unavailable, and when the sampling periods of the wind power and training data are different. We forecast the very short-term wind power every 15 minutes starting two hours after receiving the most recent measurements up to 40 hours for a total of 38 hours, without using the NWP data but using the historical weather data. Generally, the NWP works as a predictor and can be converted to wind power forecasts through machine learning-based forecasting algorithms. Without the NWP, we can still build the predictor by shifting the historical weather data and apply the machine learning-based algorithms to the shifted weather data. In this process, the sampling intervals of the weather and wind power data are unified. To verify our approaches, we participated in the 2017 wind power forecasting competition held by the European Energy Market conference and ranked sixth. We have shown that the wind power can be accurately forecasted through the data shifting although the NWP is unavailable.

효율적인 소형 기상예보서버 개발 (Development of an Efficient Small-sized Weather-conditions Forecasting Server)

  • 김상철;왕지남;박창목
    • 산업공학
    • /
    • 제13권4호
    • /
    • pp.646-657
    • /
    • 2000
  • We developed an efficient small sized weather condition forecasting system (WFS). A cheap NT-server was utilized for handling a large amount of data, while traditional WFS has conventionally relied on Unix based workstation server. The proposed WFS contains automatic weather observing system (AWS). AWS was designed for collecting weather conditions automatically, and it was linked to WFS in order to provide various weather condition information. The existing two phase scheme and chain code algorithm were used for transforming AWS's data into WFS's data. The WFS's data were mapped into geometric information system using various display techniques. Finally the transformed WFS's data was also converted into JPG (Joint Photographic Group) data type, and the final JPG data could be accessible by others though Internet. The developed system was implemented using WWW environment and has provided weather condition forecasting information. Real case is given to show the presented integrated WFS with detail information.

  • PDF

기상 예보 데이터와 일사 예측 모델식을 활용한 실시간 에너지 수요예측 (Real-time Energy Demand Prediction Method Using Weather Forecasting Data and Solar Model)

  • 곽영훈;천세환;장철용;허정호
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.310-316
    • /
    • 2013
  • This study was designed to investigate a method for short-term, real-time energy demand prediction, to cope with changing loads for the effective operation and management of buildings. Through a case study, a novel methodology for real-time energy demand prediction with the use of weather forecasting data was suggested. To perform the input and output operations of weather data, and to calculate solar radiation and EnergyPlus, the BCVTB (Building Control Virtual Test Bed) was designed. Through the BCVTB, energy demand prediction for the next 24 hours was carried out, based on 4 real-time weather data and 2 solar radiation calculations. The weather parameters used in a model equation to calculate solar radiation were sourced from the weather data of the KMA (Korea Meteorological Administration). Depending on the local weather forecast data, the results showed their corresponding predicted values. Thus, this methodology was successfully applicable to anywhere that local weather forecast data is available.

신경망의 선별학습 집중화를 이용한 효율적 온도변화예측모델 구현 (Implementation of Efficient Weather Forecasting Model Using the Selecting Concentration Learning of Neural Network)

  • 이기준;강경아;정채영
    • 한국통신학회논문지
    • /
    • 제25권6B호
    • /
    • pp.1120-1126
    • /
    • 2000
  • Recently, in order to analyze the time series problems that occur in the nature word, and analyzing method using a neural electric network is being studied more than a typical statistical analysis method. A neural electric network has a generalization performance that is possible to estimate and analyze about non-learning data through the learning of a population. In this paper, after collecting weather datum that was collected from 1987 to 1996 and learning a population established, it suggests the weather forecasting system for an estimation and analysis the future weather. The suggested weather forecasting system uses 28*30*1 neural network structure, raises the total learning numbers and accuracy letting the selecting concentration learning about the pattern, that is not collected, using the descending epsilon learning method. Also, the weather forecasting system, that is suggested through a comparative experiment of the typical time series analysis method shows more superior than the existing statistical analysis method in the part of future estimation capacity.

  • PDF

시간별 기온을 이용한 예외 기상일의 24시간 평일 전력수요패턴 예측 (24-Hour Load Forecasting For Anomalous Weather Days Using Hourly Temperature)

  • 강동호;박정도;송경빈
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1144-1150
    • /
    • 2016
  • Short-term load forecasting is essential to the electricity pricing and stable power system operations. The conventional weekday 24-hour load forecasting algorithms consider the temperature model to forecast maximum load and minimum load. But 24-hour load pattern forecasting models do not consider temperature effects, because hourly temperature forecasts were not present until the latest date. Recently, 3 hour temperature forecast is announced, therefore hourly temperature forecasts can be produced by mathematical techniques such as various interpolation methods. In this paper, a new 24-hour load pattern forecasting method is proposed by using similar day search considering the hourly temperature. The proposed method searches similar day input data based on the anomalous weather features such as continuous temperature drop or rise, which can enhance 24-hour load pattern forecasting performance, because it uses the past days having similar hourly temperature features as input data. In order to verify the effectiveness of the proposed method, it was applied to the case study. The case study results show high accuracy of 24-hour load pattern forecasting.

A Web-based Information System for Plant Disease Forecast Based on Weather Data at High Spatial Resolution

  • Kang, Wee-Soo;Hong, Soon-Sung;Han, Yong-Kyu;Kim, Kyu-Rang;Kim, Sung-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • 제26권1호
    • /
    • pp.37-48
    • /
    • 2010
  • This paper describes a web-based information system for plant disease forecast that was developed for crop growers in Gyeonggi-do, Korea. The system generates hourly or daily warnings at the spatial resolution of $240\;m{\times}240\;m$ based on weather data. The system consists of four components including weather data acquisition system, job process system, data storage system, and web service system. The spatial resolution of disease forecast is high enough to estimate daily or hourly infection risks of individual farms, so that farmers can use the forecast information practically in determining if and when fungicides are to be sprayed to control diseases. Currently, forecasting models for blast, sheath blight, and grain rot of rice, and scab and rust of pear are available for the system. As for the spatial interpolation of weather data, the interpolated temperature and relative humidity showed high accuracy as compared with the observed data at the same locations. However, the spatial interpolation of rainfall and leaf wetness events needs to be improved. For rice blast forecasting, 44.5% of infection warnings based on the observed weather data were correctly estimated when the disease forecast was made based on the interpolated weather data. The low accuracy in disease forecast based on the interpolated weather data was mainly due to the failure in estimating leaf wetness events.

기상예보정보를 활용한 월 댐유입량 예측 (Monthly Dam Inflow Forecasts by Using Weather Forecasting Information)

  • 정대명;배덕효
    • 한국수자원학회논문집
    • /
    • 제37권6호
    • /
    • pp.449-460
    • /
    • 2004
  • 본 논문에서는 월 댐유입량을 예측하는데 있어서 기상예보정보를 활용한 뉴로-퍼지 시스템의 적용성을 검토하였다. 뉴로-퍼지 알고리즘으로 퍼지이론과 신경망이론의 결합형태인 ANFIS(Adaptive Neuro-Fuzzy Inference System)을 이용하여 모형을 구성하였다. ANFIS의 공간분할에 의한 제어규칙의 선정에 있어 퍼지변수가 증가함에 따라 제어규칙이 기하급수적으로 증가하는 단점을 해결하기 위해 퍼지 클러스터링(Fuzzy Clustering)방법 중 하나인 차감 클러스터링(Subtractive Clustering)을 사용하였다. 또한 본 연구에서는 정성적인 기상예보정보를 정량화 시키는 방법을 제안하였다. AMFIS를 이용하여 월 댐유입량 예측 시, 관측자료만으로 구성된 모형에 의한 예측결과와 관측자료에 기상예보정보를 더하여 구성된 모형에 의한 예측결과를 비교하였다. 그 결과 ANFIS는 기상예보정보를 활용하여 댐유입량을 예측했을 때가 관측자료만으로 예측했을 때보다 예측능력이 더욱 정확함을 보였다.

기상관측자료를 이용한 제주도 풍력단지의 풍력발전량 예측에 관한 연구 (A Study on Estimation of Wind Power Generation using Weather Data in Jeju Island)

  • 류구현;김기수;김재철;송경빈
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2349-2353
    • /
    • 2009
  • Due to high oil price and global warming of the earth, investments for renewable energy have been increased a lot continuously. Specially, wind power has been received a great attention in the world. In order to construct a new wind farm, forecasting of wind power generation is essential for a feasibility test. This paper investigates wind velocity measurement data of Gosan weather station which located in Hankyung of Jeju island. This paper presents results of estimation of wind power generation using digital weather forecast provided from Korea meteorological administration, and the accuracy of the wind power forecasting by comparison between forecasted data and actual wind power data.

전력수요예측을 위한 기상정보 활용성평가 (Evaluation of weather information for electricity demand forecasting)

  • 신이레;윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1601-1607
    • /
    • 2016
  • 오늘날 기상정보는 도로공학, 경제학, 환경공학 등 다양한 분야에 활용되고 있다. 본 연구는 전력수요 예측을 위한 기상정보 활용성을 평가하고자 한다. 기상변수는 기상관측소에서 수집되는 기온, 풍속, 습도, 운량, 기압과 기온, 풍속, 상대습도의 합성지수인 체감온도와 불쾌지수가 고려되었다. 전력수요 예측을 위한 시계열모형으로 슬라이딩 창 방식의 TBATS 삼중지수평활모형이 고려되었다. 월 단위 기상변수와 전력수요 예측오차간 상관분석 결과를 보면 시간대별로 차이를 있으나 기온, 불쾌지수, 체감온도가 전력수요 예측오차와 상관성이 높았다. 이에 과거 3년의 월단위 전력수요 예측오차와 기상변수의 회귀모형식으로 전력수요 예측값의 편의를 보정하였다. 온도, 상대습도, 풍속으로 TBATS 모형의 전력수요 예측값을 보정한 결과 TBATS 모형에 비해 RMSE가 약 6.1% 줄었다.

FLASH FLOOD FORECASTING USING ReMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART I : MODEL DEVELOPMENT

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.113-122
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

  • PDF