• Title/Summary/Keyword: Wearable robot

Search Result 129, Processing Time 0.028 seconds

Mechanical and Electrical Characteristics of Polyurethane-Based Composite Fibers (폴리우레탄 기반 복합 섬유의 기계적, 전기적 특성)

  • Jang, Hoyoung;Lee, Hyeon-Jong;Suk, Ji Won
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.50-54
    • /
    • 2020
  • Soft robotics and wearable devices require large motions and flexibility. In this regard, there is a demand for developing stretchable strain sensors which can be attached to the soft robots and wearable devices. In this work, we fabricated stretchable and electrically conductive composite fibers by combining polyurethane (PU) and silver nanoflowers (AgNFs). The PU/AgNF composite fibers showed the change of the resistance as a function of the applied strain, demonstrating the potential for stretchable strain sensors in soft robotics and wearable devices. The mechanical and electrical characteristics of the composite fibers were measured and analyzed to use the composite fibers for stretchable strain sensors.

Heel Trajectory Analysis Method of Walking using a Wearable Sensor (착용형 센서를 이용한 보행 뒤꿈치 궤적 분석 방법)

  • Hee-Chan Kim;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.731-736
    • /
    • 2023
  • Walking is a periodic motion that contains specific phases and is a basic movement method for humans. Through gait analysis, various musculoskeletal health conditions can be identified. In this study, we propose a calf wearable sensor system that can perform gait analysis without space limitations. Using a ToF(: Time-of-Flight) sensor that measures distance and an IMU(: Inertial Measurement Unit) sensor that measures inclination the heel trajectory of walking was derived by proposed method. In case of abnormal gait with risk of fall, gait is evaluated by analyzing the change pattern of the heel trajectory.

Control Strategy and Verification of Dual-Arm Manipulator for Disaster-Responding Special Purpose Machinery (재난 대응 특수목적기계의 양팔작업기 제어전략 및 검증)

  • Kim, Jin-Tak;Park, Sang-Sin;Han, Sang-Cheol;Kim, Jin-Hyeon;Jo, Jeong-San
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.31-37
    • /
    • 2020
  • We are concerned with the dual-arm manipulation for disaster-responding special-purpose machinery. This paper presents a control strategy for performing complex work in an irregular environment, the control algorithm, the hydraulic circuit, and the master devices. The occurrence of collapse accidents at disaster sites such as natural disasters and building collapses is increasing, which is emerging as a social problem. In particular, for the initial response, various tasks must be performed in an irregular environment. The Marionette algorithm for intuitive control of 'as if the operator's arm is moving' was presented as a control strategy for dual-arm manipulators with attachments and the prototype. Next, the hydraulic circuit, control system, and wearable-type master device presented to implement the Marionette algorithm were explained and verified through an experiment in which rebar-cutting, drum-lifting, and lifting a bottle with one arm and pouring the water into the bucket with the other arm were tested.

Design and Implementation of a Wearable Hand Rehabilitation Robot for spasticity patient (경직환자를 위한 착용형 손 재활로봇 설계 및 구현)

  • Kim, Dae-Hee;Yoon, Sung-jo;Park, Yong-sik;Jeon, Kwang-woo;Park, Sung-Ho;Jeon, Jung-Su;Seo, Kap-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.21-24
    • /
    • 2014
  • 본 연구는 뇌손상(뇌졸중, 외상성 뇌손상, 뇌성마비 등)으로 인하여 손의 능동적 움직임이 결여되어 발생하는 관절의 구축, 근육의 단축, 근육의 탄력성 저하 등의 문제점을 분석하여 인체 역학적 모델에 따른 과학적 설계를 기반으로 환자의 손 기능 회복을 위하여 로봇 기술과 스마트폰의 융합을 통한 재활 로봇 보조 치료기를 설계하고 구현하였다. 제안된 시스템은 일반적인 근 경직을 치료하는 방법을 응용하여 IT 기술과 로봇기술을 융합하여 치료사들의 부담을 덜어 주고, 환자들에게 오랫동안 정확한 운동을 반복적으로 할 수 있도록 하는데 목적이 있다. 하나의 구동기로 2자유도의 움직임을 조절 할 수 있는 링크 매커니즘과 링크의 길이를 조절하여 신전(extension)과 과신전(Hyperextension)의 범위 조절이 가능하도록 로봇 플랫폼을 설계하였다. 또한 환자의 재활정도 및 상태에 적합한 운동속도, 운동반복횟수 등을 손쉽게 조작할 수 있는 등의 개인 맞춤형 재활훈련이 가능한 사용자 인터페이스를 설계 및 구현하였다.

  • PDF

Design and Control of a Novel Tendon-driven Exoskeletal Power Assistive Device (새로운 와이어 구동방식 외골격 보조기의 설계 및 제어)

  • Kong Kyoung-chul;Jeon Doyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.936-942
    • /
    • 2005
  • Recently the exoskeletal power assistive equipment which is a kind of wearable robot has been widely developed to help the human body motion. For the elderly people and patients, however, some limits exist due to the weight and volume of the equipments. As a feasible solution, a tendon-driven exoskeletal power assistive device fur the lower body, and caster walker are proposed in this research. Since the caster walker carries the heavy items, the weight and volume of the wearable exoskeleton are minimized. The key control is used to generate the joint torque required to assist motions such as sitting, standing and walking. Experiments were performed for several motions and the EMG sensors were used to measure the magnitude of assistance. When the motion of sitting down and standing up was compared with and without wearing the proposed device, the $25\%$ assistance was acquired.

Mutifunctional EMI Shielding and Sensing Applications based on Low-dimensional Nanomaterials (저차원 나노 소재 기반 다기능 전자파 차폐 및 센싱 응용기술)

  • Min, B.K.;Yi, Y.;Nguyen, V.T.;Mondal, S.;Choi, C.G.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.11-20
    • /
    • 2020
  • With the widespread use of high-performance electronics and mobile communications, electromagnetic interference (EMI) shielding has become crucial for protection against malfunctioning of electronic equipment and harmful effects to human health. In addition, smart sensor technologies will be rapidly developed in untact (non-contact) environments and personal healthcare fields. Herein, we introduce our recently developed technologies for flexible multifunctional EMI shielding, and highly sensitive wearable pressure-strain and humidity sensors realized using low-dimensional nanomaterials.

Development of Insole Sensor System and Gait Phase Detection Algorithm for Lower Extremity Exoskeleton (하지 외골격 로봇을 위한 인솔 센서시스템 및 보행 판단 알고리즘 개발)

  • Lim, Dong Hwan;Kim, Wan Soo;Ali, Mian Ashfaq;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1065-1072
    • /
    • 2015
  • This paper is about the development of an insole sensor system that can determine the model of an exoskeleton robot for lower limb that is a multi-degree of freedom system. First, the study analyzed the kinematic model of an exoskeleton robot for the lower limb that changes according to the gait phase detection of a human. Based on the ground reaction force (GRF), which is generated when walking, to proceed with insole sensor development, the sensing type, location, and the number of sensors were selected. The center of pressure (COP) of the human foot was understood first, prior to the development of algorithm. Using the COP, an algorithm was developed that is capable of detecting the gait phase with small number of sensors. An experiment at 3 km/h speed was conducted on the developed sensor system to evaluate the developed insole sensor system and the gait phase detection algorithm.

Control Algorithm of the Lower-limb Powered Exoskeleton Robot using an Intention of the Human Motion from Muscle (인체근육의 동작의도를 이용한 하지 근력증강형 외골격 로봇의 제어 알고리즘)

  • Lee, Hee-Don;Kim, Wan-Soo;Lim, Dong-Hwan;Han, Chang-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 2017
  • This paper present a novel approach to control the lower body power assistive exoskeleton system of a HEXAR-CR35 aimed at improving a muscular strength. More specifically the control of based on the human intention is crucial of importance to ensure intuitive and dexterous motion with the human. In this contribution, we proposed the detection algorithm of the human intention using the MCRS which are developed to measure the contraction of the muscle with variation of the circumference. The proposed algorithm provides a joint motion of exoskeleton corresponding the relate muscles. The main advantages of the algorithm are its simplicity, computational efficiency to control one joint of the HEXAR-CR35 which are consisted knee-active type exoskeleton (the other joints are consisted with the passive or quasi-passive joints that can be arranged by analyzing of the human joint functions). As a consequence, the motion of exoskeleton is generated according to the gait phase: swing and stance phase which are determined by the foot insole sensors. The experimental evaluation of the proposed algorithm is achieved in walking with the exoskeleton while carrying the external mass in the back side.