• Title/Summary/Keyword: Wearable System

Search Result 563, Processing Time 0.023 seconds

Study on Visual Communication Design of Wearable Computing Devices (웨어러블 컴퓨팅 디바이스를 이용한 시각 디자인 구현 및 연구)

  • Lee, Su Jin
    • Korea Science and Art Forum
    • /
    • v.34
    • /
    • pp.251-262
    • /
    • 2018
  • The purpose of this study is to understand how wearable computing devices are designed and how to design them in a technology based wearable device design research. Research is premised on the consideration of producers and consumers. There is wearable computer of eyeglasses, watches, clothes, and so on. The user can always wear these products comfort and use as part of the body without any sense of discomfort, and the goal is to supplement or double the ability of the human being. It should be easy to use them convenient, wear comfortable, safe and sociable at any time. For the satisfaction these conditions, the wearable computing devices have several factors. There are technical performances, visual aesthetics, Human body system and devices communication and safety. Furthermore, these factors have to match to operating system, real-time operating system and applied software. To comprehend wearable computing devices should be offered the design of the both software and hardware designed.

A Mobile Stress Management System utilizing Variable Voice Information According to the Wearing Area

  • Kang, Byeongsoo;Vannroath, Ky;Kang, Hyun-syug
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.95-100
    • /
    • 2017
  • Recently, as stress has become a major threat to people's health, there is a growing interest in wearable stress management services for stress relief. In this paper, we developed a wearable device(Care-on) capable of extracting changeable human voice information at each site and a Healthcare App(S-Manager) that enables stress management in real time using the wearable device. It collects and analyzes variable real-time voice information for each part of the person's body. And It also provides the ability to monitor stress conditions in a mobile environment and provide feedback on the analysis results in step by step in the mobile environment. We tested the developed wearable devices and app in a mobile environment and analyzed the results to confirm their usefulness.

A Study on the Characteristic Method of Wearable Robot by Mission Profile (임무유형별 착용로봇 특성화 방안 연구)

  • Dowan Cha;Kyungtaek Lee;Joongeup Kye
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.444-455
    • /
    • 2023
  • In this report, a specialization plan for wearable robots by mission profile was investigated and analyzed to derive an application plan. The final goal of this study was to derive the operating requirements of wearable robots according to specialized plans, and to conduct a specialized study on wearable robots by mission profile through investigation/analysis of specialized plans for each mission profile. In the study, 1) Research on technology trends related to military wearable robots such as patents and papers, 2) Research/analysis of mission profiles to characterize wearable robots, 3) Analysis of wearable robot specialization plans according to mission profiles, and 4) Requirements for wearable robot operation were derived. In the first time of the study, a survey on technology trends related to wearable robots for soldiers such as patents and papers was completed, and a military consultative body was conducted to derive measures to characterize wearable robots. In addition, a survey was conducted on mission profiles, and the second time study derived Key Performance Parameters (KPP) for operational performance, core performance, and system performance based on scenarios by mission profile. However, it is revealed that the KPP derived from the research results was not covered in this paper because it was judged that more in-depth research was needed prior to disclosure. In order to prepare for future battlefield situations and increase the usability of wearable robots, this study was conducted to characterize wearable robots by considering the characteristics of soldiers' equipment according to mission profiles and to characterize wearable robots by mission profile.

Application of Intelligent Wearable Computing (지능형 웨어러블 컴퓨팅의 응용)

  • Kim, Seong-Joo;Jung, Sung-Ho;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.304-309
    • /
    • 2004
  • This work proposes the wearable and intelligent system to control mobile vehicle instead of user. The system having the ability of assistance as well as portable can be applied to various controller. It is possible to observe the state of mobile vehicle and have a good command of robot instead of human. In this paper, the wearable system operating the mobile vehicle by deciding the velocity and rotation angle that are demanded for collision avoidance with the obtained driving information from mobile vehicle is implemented. To make the proposed wearable system have an intelligence, the hierarchical fuzzy logic and neural network are used.

Glove Type Heart Rate Monitoring System Using Blood Flow Change (혈류량 변화를 이용한 장갑형 심박수 모니터링 시스템)

  • Han, Yun-Cheol;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.503-504
    • /
    • 2017
  • Recently, economic growth in the world has increased interest in healthy life, and the smart health care industry is growing. In the field of smart healthcare, wearable-type biometric information measurement technology has been highlighted due to the importance of IoT technology. The purpose of this study is to develop a wearable heart - rate monitoring system that can be applied to wearable health care and glove - type monitoring that enables convenient monitoring of heart rate during activity. For this purpose, a glove - type wearable health care system was developed and its performance was evaluated. Experimental results showed that the heartbeat monitoring was possible even in the presence of actual daily activities.

  • PDF

Analysis of the Categorization of Wearable devices for Infants and Children by Function, Characteristics, and Improvements (영유아용 웨어러블 디바이스의 기능별 분류, 특성 및 개선점에 대한 분석)

  • Roh, Eui Kyung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.5
    • /
    • pp.655-666
    • /
    • 2021
  • This study aims to classify wearable devices for infants and children according to their function, and to analyze the types and attachment methods of the devices by function, operating system, characteristics of materials, and types of batteries, and to identify the points for improvement. Forty-eight types of devices investigated through previous studies and keyword research online were analyzed. Wearable devices for infants and children were classified according to their functions into wearable monitors, wearable thermometers, GPS trackers, and smart watches. Devices had different shapes and attachment methods according to their functions, and were mainly clothes or accessory types. The accessory type devices were attached to the body using velcro, clips, bands, or adhesives. Wearable monitors and thermometers mainly used Bluetooth to transmit data wirelessly, and location trackers used various combinations of 4G(LTE), 5G networks, GPS, Wi-Fi, and Bluetooth. Smartwatches had different functions depending on whether smart phones were linked to them or not. Wearable monitors and thermometers mainly used by infants provided material information, but other devices did not. These devices used rechargeable, replaceable, non-rechargeable or non-replaceable batteries. Wearable devices need to be improved to reduce the discomfort experienced by infants and children due to the attachment position, malfunction, skin trouble caused by materials, short time of use of batteries, version conflict and complexity with the device when linking with a smart phone, and non-operation when using Bluetooth.

Navigator Lookout Activity Classification Using Wearable Accelerometers

  • Youn, Ik-Hyun;Youn, Jong-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.182-186
    • /
    • 2017
  • Maintaining a proper lookout activity routine is integral to preventing ship collision accidents caused by human errors. Various subjective measures such as interviewing, self-report diaries, and questionnaires have been widely used to monitor the lookout activity patterns of navigators. An objective measurement of a lookout activity pattern classification system is required to improve lookout performance evaluation in a real navigation setting. The purpose of this study was to develop an objective navigator lookout activity classification system using wearable accelerometers. In the training session, 90.4% accuracy was achieved in classifying five fundamental lookout activities. The developed model was then applied to predict real-lookout activity in the second session during an actual ship voyage. 86.9% agreement was attained between the directly observed activity and predicted activity. Based on these promising results, the proposed unobstructed wearable system is expected to objectively evaluate navigator lookout patterns to provide a better understanding of lookout performance.

The Development of a Wearable Prototype to Measure Clothing Pressure through Sensor Calibration Procedure

  • Jin, Heejae;Lee, Hyojeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.827-835
    • /
    • 2022
  • Clothing pressure is considered the essential factor affecting the comfort of clothing, so it is crucial that it is measured precisely. The purpose of this study is to construct a prototype using the Adafruit Flora as the Arduino system, which can be used as a wearable framework for easy, low-cost, and precise clothing pressure measurement. The study also aims to determine how best to conduct the procedure of sensor calibration. To optimize the accuracy of the sensors, the calibration procedure was implemented using mathematical methods that combined polynomial and exponential regression in a hybrid approach. The prototype can easily measure clothing pressure even during active movements, as seen in the detection of stable signals. In addition, since the system was specifically proposed as a wearable patch that can be easily attached and removed as necessary, it can also be used to standardize the value of clothing pressure in each movement.

An Interactive Method between HSE System and Wearable Components through Analysis on Risk Scenarios (위험 시나리오 분석을 통한 스마트 HSE 시스템 및 웨어러블 컴포넌트 연동방안)

  • Shon, DongKoo;Lim, Dong-Sun;Im, Kichang;Park, Jeong-Ho;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.5
    • /
    • pp.407-416
    • /
    • 2018
  • The development of modern technology has rapidly grown the field of wearable devices. Wearable equipments should satisfy low power consumption and small/lightweight because of characteristics of body wearing. In this paper, an overview of wearable equipments is explained, and wearable device market is investigated. In addition, we investigate developed technology of wearable components, which is divided into component and communication technology. Meanwhile, a smart HSE system is required to meet the demand of the society for the serious industrial accident. To address this issue, we propose an interactive method between the wearable component and the HSE system, which are expected to be effective in safety management. As a detailed case study, a risk scenario is made with risk factors in welding workshop, and then we propose an interactive method between a wearable component and an HSE system that can reduce the risk. This proposed method is useful to achieve high level of worker's safety.

Teleloperation of Field Mobile Manipulator with Wearable Haptic-based Multi-Modal User Interface and Its Application to Explosive Ordnance Disposal

  • Ryu Dongseok;Hwang Chang-Soon;Kang Sungchul;Kim Munsang;Song Jae-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1864-1874
    • /
    • 2005
  • This paper describes a wearable multi-modal user interface design and its implementation for a teleoperated field robot system. Recently some teleoperated field robots are employed for hazard environment applications (e.g. rescue, explosive ordnance disposal, security). To complete these missions in outdoor environment, the robot system must have appropriate functions, accuracy and reliability. However, the more functions it has, the more difficulties occur in operation of the functions. To cope up with this problem, an effective user interface should be developed. Furthermore, the user interface is needed to be wearable for portability and prompt action. This research starts at the question: how to teleoperate the complicated slave robot easily. The main challenge is to make a simple and intuitive user interface with a wearable shape and size. This research provides multi-modalities such as visual, auditory and haptic sense. It enables an operator to control every functions of a field robot more intuitively. As a result, an EOD (explosive ordnance disposal) demonstration is conducted to verify the validity of the proposed wearable multi-modal user interface.