• Title/Summary/Keyword: Wearable Robot

Search Result 129, Processing Time 0.03 seconds

Digital Health Care based in the Community (지역사회기반 디지털 헬스케어)

  • Han, Jeong-won;Jung, Ji-won;Yu, Ji-in;Kim, Ji-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.511-513
    • /
    • 2022
  • Digital Health Care is the convergence of ICT and (non)medical technology, emphasizing the importance of prevent and monitoring health management in terms of new challenging medical paradigm: predictive, preventive, personalized and participatory. Beyond the limited medical industry of long-term care insurance, it is emerging that AI, IoT, Big Data related new services with new technologies in the 4th revolution era. It is also noted that business field based on test bed is emergent; Caring Robot, wearable devices need to be launched in the market. Diverse service is possible with Big Data and AI etc.

  • PDF

Recent Advances on TENG-based Soft Robot Applications (정전 발전 기반 소프트 로봇 응용 최신 기술)

  • Zhengbing, Ding;Dukhyun, Choi
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.378-393
    • /
    • 2022
  • As an emerging power generation technology, triboelectric nanogenerators (TENGs) have received increasing attention due to their boundless promise in energy harvesting and self-powered sensing applications. The recent rise of soft robotics has sparked widespread enthusiasm for developing flexible and soft sensors and actuators. TENGs have been regarded as promising power sources for driving actuators and self-powered sensors, providing a unique approach for the development of soft robots with soft sensors and actuators. In this review, TENG-based soft robots with different morphologies and different functions are introduced. Among them, the design of biomimetic soft robots that imitate the structure, surface morphology, material properties, and sensing/generating mechanisms of nature has greatly benefited in improving the performance of TENGs. In addition, various bionic soft robots have been well improved compared to previous driving methods due to the simple structure, self-powering characteristics, and tunable output of TENGs. Furthermore, we provide a comprehensive review of various studies within specific areas of TENG-enabled soft robotics applications. We first explore various recently developed TENG-based soft robots and a comparative analysis of various device structures, surface morphologies, and nature-inspired materials, and the resulting improvements in TENG performance. Various ubiquitous sensing principles and generation mechanisms used in nature and their analogous artificial TENG designs are demonstrated. Finally, biomimetic applications of TENG enabled in tactile displays as well as in wearable devices, artificial electronic skin and other devices are discussed. System designs, challenges and prospects of TENGs-based sensing and actuation devices in the practical application of soft robotics are analyzed.

Characteristics of Integrated Aging-friendly Technologies into Future Smart Housing (미래주택에 적용될 고령친화기술의 특성연구)

  • Cui, Jing yu;Lee, Yeun sook;Hwang, Ji hye
    • Design Convergence Study
    • /
    • v.15 no.2
    • /
    • pp.1-15
    • /
    • 2016
  • The purpose of this study is to identify the characteristics of aging-friendly technology that can be integrated into future smart homes in an aging society. The literature survey and content analysis method were used to collect and analyze data. Papers of the international journal ICOST (International Conference on Smart Homes and Health Telematics) that professionally deal with converged technologies were analysis units. Sixty-five papers among 215 papers published from 2007 through 2014 were selected on the basis of end-users orientation. Totally, out of 65 papers 76 technology items were extracted. Characteristics of those technologies were analyzed focusing on purpose and application methods. As results, in terms of purpose, the technologies were oriented to provide both of psychological and physiological support to the users, focusing on the safety, convenience, health and entertainment to extend independent life of the elderly. Among the application method such as building structure, furniture, product, wearable device and free movable robot, product were dominant. Through those results, the aging-friendly technology is expected to alleviate a wide range of issues in aging society.

A Study on Particular Abnormal Gait Using Accelerometer and Gyro Sensor (가속도센서와 각속도센서를 이용한 특정 비정상보행에 관한 연구)

  • Heo, Geun-Sub;Yang, Seung-Han;Lee, Sang-Ryong;Lee, Jong-Gyu;Lee, Choon-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1199-1206
    • /
    • 2012
  • Recently, technologies to help the elderly or disabled people who have difficulty in walking are being developed. In order to develop these technologies, it is necessary to construct a system that gathers the gait data of people and analysis of these data is also important. In this research, we constructed the development of sensor system which consists of pressure sensor, three-axis accelerometer and two-axis gyro sensor. We used k-means clustering algorithm to classify the data for characterization, and then calculated the symmetry index with histogram which was produced from each cluster. We collected gait data from sensors attached on two subjects. The experiment was conducted for two kinds of gait status. One is walking with normal gait; the other is walking with abnormal gait (abnormal gait means that the subject walks by dragging the right leg intentionally). With the result from the analysis of acceleration component, we were able to confirm that the analysis technique of this data could be used to determine gait symmetry. In addition, by adding gyro components in the analysis, we could find that the symmetry index was appropriate to express symmetry better.

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.

Smart Glasses Cannula Guide System Development for Interventional Cardiology Procedures (중재적 심장 질환 시술을 위한 스마트 글래스 삽입관 가이드 시스템 개발)

  • Jang, Ik Gyu;Heo, Yeong Jun;Jeon, Geum Sang;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.173-178
    • /
    • 2020
  • Remote control intervention surgery robotic system improves treatment effect on cardiovascular patients and reduces X-ray exposure. However, at the time of the first procedure, CT (computerized tomography) and other ultrasound diagnostic equipment should be used because the operator must insert the cannula directly into the patient's leg. Improvements to this have been un-met-needs of hospitals. In this paper, we developed a system that can insert the cannula intuitively and quickly by displaying blood vessels at a glance through the system using smart wearable glasses. The core development method is as follows. In order to project augmented reality onto the surgical image, CT scan angiography image is extracted and processed. In the process, three CT-Markers are used to create a coordinate system of blood vessel images. Additionally, a reference marker is photographed on a single camera to obtain a camera coordinate system. Since the CT marker and the reference marker are in the same position, 3D registration is performed. In the text, a detailed explanation will be given.

Place Modeling and Recognition using Distribution of Scale Invariant Features (스케일 불변 특징들의 분포를 이용한 장소의 모델링 및 인식)

  • Hu, Yi;Shin, Bum-Joo;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • In this paper, we propose a place modeling based on the distribution of scale-invariant features, and a place recognition method that recognizes places by comparing the place model in a database with the extracted features from input data. The proposed method is based on the assumption that every place can be represented by unique feature distributions that are distinguishable from others. The proposed method uses global information of each place where one place is represented by one distribution model. Therefore, the main contribution of the proposed method is that the time cost corresponding to the increase of the number of places grows linearly without increasing exponentially. For the performance evaluation of the proposed method, the different number of frames and the different number of features are used, respectively. Empirical results illustrate that our approach achieves better performance in space and time cost comparing to other approaches. We expect that the Proposed method is applicable to many ubiquitous systems such as robot navigation, vision system for blind people, wearable computing, and so on.

  • PDF

Understanding and Research Trends in Liquid Crystal Elastomer Fibers (액정 엘라스토머 섬유의 이해와 연구동향)

  • Young Been Kim;Dae Seok Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.347-356
    • /
    • 2023
  • Liquid crystal elastomer (LCE) fibers have been widely applied in various fields, such as soft robots and biomimetic actuators, in a one-dimensional form. LCEs possess the characteristics of both fluidity and solid order, as well as the elasticity of rubber, and exhibit stimulus-response based on these properties. In particular, by programming the responsiveness to various stimuli such as heat, light, electric fields, and magnetic fields in terms of shape-changing, various movements such as lifting, twisting, and rotating can be realized with high degrees of freedom. Therefore, LCE fibers have the potential for application in various fields such as artificial muscles, soft robots, wearable technologies, and sensing technologies. The research on liquid crystal elastomer fibers is evaluated to have high applicability in various fields in the Fourth Industrial Revolution as a smart material that can include various functionalities beyond simple fibers. In this review, we introduce the structure and basic characteristics of liquid crystal elastomer fibers, the latest research trends on orientation-based fabrication methods, and various applications such as artificial muscles, smart fabrics, and soft robots.

A Study on u-Care Service for the Health and Safety of the Elderly Living Alone (1인 가구 고령자의 건강과 안전을 위한 u-Care에 관한 연구)

  • Kang, Seungae
    • Convergence Security Journal
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2017
  • Korea is experiencing a rapid increase in the number of elderly living alone accompanying the aging society problem, a nd is making efforts to solve the problem through the policy of 'living alone u-care service'. The purpose of this study is to propose a better u-Care service improvement method by applying new technology to improve the user experience of ucare service for the health and safety of the elderly living alone. First, the improvement of u-Care service for elderly livin g alone by applying IoT technology. It provides remote monitoring service using health information data measured through wearable device, and transmits personal health status to medical institution by using personal device such as smart phone, so that remote medical consultation or telemedicine can be connected in the future. Second, improvement of u-Care service through consideration of emotional stability of elderly living alone as well as simple safety and health care through applica tion of emotional service robot technology.It is expected that it will be able to help independent living of one person's elde rly person in the future by providing caring function service to existing u-care service providing service.