• 제목/요약/키워드: Wear tolerance

검색결과 34건 처리시간 0.023초

타일 금형 라이너 및 끼움재의 열박음 공차 및 결합력에 대한 해석적 연구 (Finite Element Analysis of Shrink Fitting Tolerance and Force of Tile Mold Liner and Fitting Material)

  • 임동욱;이정식;정영호;최두선;고강호;이정우;김재훈
    • Design & Manufacturing
    • /
    • 제14권3호
    • /
    • pp.50-56
    • /
    • 2020
  • Ceramic tile is widely used as a floor or interior decoration of buildings. The main processes are raw material blending, molding, drying, firing, etc., and since dimensional and quality stability are very important, they are generally molded by a dry press method. In ceramic tile molds, there is a liner that can be easily replaced in case of wear. The liner is constantly abrasion due to a continuous pressing process during tile forming, and it is required to be replaced every certain period. Even in the liner, use a wear-resistant fitting material only in areas where wear is concentrated. However, there was a risk that the fitting material was applied to large-sized tile molding due to problems such as damage to the molding machine and decrease in productivity when detached during the actual tile molding process due to weak fitting strength with the liner. Therefore, in this study, thermal-structural analysis for fitting tolerance analysis and structural analysis for fitting force analysis were performed for the shrink fit process of the fitting material.

액티브 시니어 여성의 자전거의류 선호에 따른 디자인 제안 (Suggestion of the Bicycle Wear Design based on Active Senior Women's Preference)

  • 정희경;이정란
    • 한국의류산업학회지
    • /
    • 제17권4호
    • /
    • pp.604-612
    • /
    • 2015
  • This study investigates preferred bicycle wear designs that can satisfy active senior consumers. A survey was conducted on 50-60's women who periodically rode bicycles. The results indicated a preference for slim designs and red colors. Jacket designs preferences were for a tight fit for size tolerance, stand collar style, and elastic band details for cuff styles. Pants design preferences were for a whole band waist belt type with a tight fit style such as leggings in pants silhouette, zipper details on the side line and ankle length. They also preferred styles with pads attached to underpants in the pad style and the part of the back waist in the pocket position. The survey showed four kinds of jacket design drawings on an ordinal scale rating. Results indicated a preference for set-in variation jackets with the red and gray color combination. Finally, we demonstrated bicycle wear design suggestions. The jacket applied different armhole line colors connected to the sleeve to make the waist slimmer; in addition, stretchable material helped improve armpit part functionality.

절삭공정에서 Fault-tolerance 기능을 갖는 지능형 감시 및 제어시스템의 개발 (Development of a Fault-tolerant Intelligent Monitoring and Control System in Machining)

  • 최기흥
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.470-476
    • /
    • 1997
  • The dynamic characteristics of industrial processes frequently cause an abnormal situation which is undesirable in terms of the productivity and the safety of workers. The goal of fault-tolerance is to continue performing certain activities even after the failure of some system cononents. A fault-tolerant intelligent monitoring and control system which is robust under disturbances is proposed in this paper. Specifically, the fault-tolerant monitoring scheme proposed consists of two process models and the inference module to preserve such a robustness. The results of turning experiments demonstrate the effectiveness of the fault-tolerant scheme in the presence of built-up edge.

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

Comparison Research on the Ease of Fitted Dress Shirt Patterns

  • Lee, Eunhae;Park, Sanghee
    • 패션비즈니스
    • /
    • 제18권3호
    • /
    • pp.91-103
    • /
    • 2014
  • Shirts which have been a inner-wear in men's suit in the past, are being changed into an item that 20's men utilize to their individuality. Dress shirts have gotten out of its shape, becoming tight and slim with activity and fashion trend. In this study, two patterns of fitted dress shirts in a clothing construction text book were compared with the pattern of an apparel company with regard to the size tolerance and appearance silhouette; this comparison was performed through a fitting test and an appearance evaluation. According to the study, size tolerance of chest girth and waist girth were about 6~8cm and 10~18cm, respectively. Neck girth of the collar was tight in both the fitting test and appearance evaluation. Thus, the measurement value of the neck base girth had to be used for the collar pattern making. Moreover, approximately 35cm is a moderate size for the width on the upper arm in sleeve. Therefor the factors such as size tolerance of waist girth, height of sleeve cap, slim sleeve width and measurement value of neck base girth are being considered for the pattern making of fitted dress shirts.

램프 틸트에 의한 언로드 특성 분석 (Analysis of Unload Characteristics by Ramp Tilt)

  • 이용현;김기훈;김석환;이상직;박노철;박영필;박경수;김철순;유진규
    • 정보저장시스템학회논문집
    • /
    • 제5권2호
    • /
    • pp.70-75
    • /
    • 2009
  • Most hard disk drives uses load/unload technology because of benefits as like an increased areal density, a reduced power consumption and an improved shock resistance. However, ramp tilt induced by ramp manufacture and assembly causes mechanical problems such as unload fail in case of exceeding ramp tolerance. In this paper, we focus on experimental analysis for unloading characteristics affected by ramp tilt. We repeatedly perform load/unload test as 500,000 cycles for original model and ramp tilt model. This paper shows that it is possible to analyze unload characteristics through measuring scratch and wear of suspension lift-tab, ramp, suspension dimple-flexure and disk. We also identify structural relation between suspension lift-tab and ramp through scratch and wear of suspension lift-tab and ramp. As the result of measurement and analysis, we can investigate decrease of unloading performance in ramp tilt model.

  • PDF

밀링가공에서의 커더 런 아웃량 검출에 관한 연구 (A Study on the Detection of Cutter Runout Magnitude in Milling)

  • 황준;정의식;이기용;신승춘;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.151-156
    • /
    • 1995
  • This paper presents a methodology for real-time detecting and identifying the runout geometry of an end mill. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear,amplification of force variation and hence enlargement vibration amplitude. Form understanding of chip load change kinematics, the analytical sutting force model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the total cutting forces can be given as the algebraic multiplication of the Fourier transforms of the local cutting forces and the chip width density of the cutter. Experimental study are presented to validata the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance tolerance and surface quality for industriql application.

  • PDF

원전 배관감육 평가를 위한 새로운 기법의 도입 및 타당성 (Introduction and Feasibility on a New Technology for the Pipe Wall Thinning Evaluation of Nuclear Power Plants)

  • 황경모;윤훈;박현철
    • Corrosion Science and Technology
    • /
    • 제13권2호
    • /
    • pp.62-69
    • /
    • 2014
  • A huge number of carbon steel piping components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the piping components. To manage the wall thinning degradation, most of utilities in the world predict the wall thinning rate based on the computational program such as CHECWORKS, COMSY, and BRT-CICERO, evaluate the UT (Ultrasonic Test) data, and determine next inspection timing, repair or replacement, if needed. There are several evaluation methods, such as band, blanket, and strip methods, commonly used for determining the wear of piping components from single UT inspection data. It has been identified that those single UT evaluation methods not only do not consider the manufacturing features of pipes, but also may exclude the data of the most thinned point when determining the representative wear rate of piping components. This paper describes a newly developed single UT evaluation method, E-Cross method, for solving above problems and introduces application examples for several pipes and elbows. It was identified that the E-Cross method using the length and width of UT data excluded the most thinned points appropriate as the single UT evaluation method for thinned piping components.

냉간단조 생산성 향상 사례 (Case studies for productivity enhancement on cold forging)

  • 최석탁;이일환;권용철;이정환;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.42-47
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. Therefore, a tool life is one of the important issues on cold forging industry. However, since variables related with tool life are many complicated, the studies for solution should be investigated by the systematic research approach. The shape and process changes of die, the hardness changes of material and the tolerance of dies to decrease the die stress are analyzed by the FEM software. The heat-treatment of tool material is investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, it is investigated that the shape and dimension of tool give effect into both tool life and quality of forged product..

  • PDF

볼 엔드밀을 사용한 곡면가공 시뮬레이션 시스템 개발 (Development of Simulation System Curved Surface Rendering using a Ball-end Milling)

  • 박홍석;박준학;이재종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.125-128
    • /
    • 1997
  • They use a Ball End-mill in order to manufacturing sculptured surface when making metal mold, mold, cars and aircraft. In the work of a Ball End-mill case, customers do not often satisfied with manufacturing precision. Eventually, they have to re-work for the purpose of meeting manufacturing precision. There are resulted in lots of loss, whereby, in terms of both time and costs. The reasons of tolerance reducing manufacturing precision are thermal strain, the surface is damaged because of increasing cutting force and tool wear, tool deflection etc.. We focus on, however, manufacturing precision caused due to deflection of tool.

  • PDF