• 제목/요약/키워드: Wear resistance properties

검색결과 647건 처리시간 0.028초

급속응고 Al-20wt%Si-5wt%Fe 합금분말 압출재의 강도에 관한 연구 (Fabrication of Rapidly Solidified Al-20wt%Si-5wt%Fe Alloy Powder and Mechanical Properties of its Extrudates)

  • 김택수
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.66-71
    • /
    • 1994
  • Optical microstructures and mechanical properties of Na gas atomized Al-20Si-5Fe alloying powder and its hot extrudates were studied on 3 different types of powder size distribution. This powder showed the size distribution of 10~210 $\mu\textrm{m}$. Also the microstructures of $\alpha$-Al, primary and eutectic Si and needle shaped intermetallic compounds were observed by optical microscope. These needle shaped intermetallic compounds were identified as ${\delta}Al_4FeSi_2$- by XRD and EDX analysis. The ultimate tensile strength(UTS) of these alloy extrudates was increased from 324 to 390 MPa with decreasing powder size range from 120~210 $\mu\textrm{m}$ to 10~64 $\mu\textrm{m}$. A value of Micro-vic-kers hardness was simillar to the result of UTS. These extrudates showed better wear resistance than those of Al-20Si-2X(X : Ni, Cr, Zr), although they are insensitive to the size distribution. These results indicate that the presentation of ${\delta}Al_4FeSi_2$ intermetallic compounds contributed to the wear resistance improvement.

  • PDF

Thixoforging Process에 의하여 제조한 금속복합재료 실린더라이너 부품의 기계적 특성 평가 (Mechanical Characteristics Evaluation of Metal Matrix Composites Cylinder Linear Fabricated by Thixoforging Process)

  • 허재찬;이승후;강충길
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.58-65
    • /
    • 2003
  • The conventional forming process such as squeeze casting or die casting for fabricating metal matrix composites products have a disadvantage such as non homogenous distribution of reinforcement, weak bonding between matrix and reinforcement and cost increase in parts fabrication. Thixoforming process has been accepted as a new method for fabricating the net shaped metal matrix composites with lightweight and wear resistance. In this paper, the effect of volume fraction and reinforcement sizes on mechanical properties in cylinder liner part of metal matrix composites has been investigated with processes parameters such as pressure and velocity. Moreover, the methods to obtain the thixoforged composites cylinder liner with high quality has been proposed. To evaluate the composites cylinder linear fabricated at the conditions proposed in this study, mechanical properties of fabricated composites cylinder linear were compared with those of commercial composites cylinder linear.

반응결합에 의해 제조된 ZTA복합체의 기계적 특성 (Mechanical Properties of ZTA Composites Fabricated by Reaction Bonding)

  • 장복기;백용혁;문종하;이종호
    • 한국세라믹학회지
    • /
    • 제34권6호
    • /
    • pp.577-582
    • /
    • 1997
  • The mechanical properties of Al2O3-ZrO2 composites fabricated by RBAO(reaction bonded aluminium oxide) process were investigated. As the amount of ZrO2 increased the sinstered density of Al2O3-ZrO2 composites decreased slightly, but wear resistance was enhanced. Bending strength of Al2O3-ZrO2 composites increased in proportion to the amount of al in case of a fixed ZrO2 content. When the amount of Al was fixed bending strength reached its maximum value at 25 wt% ZrO2. The fracture toughness(K1c) increased with increasing content of ZrO2, but decreased with increasing Al amount. On the other hand, the fracture mode of Al2O3-ZrO2 composites was the mixed mode of inter-and transgranular fracture.

  • PDF

전기도금법에 의해 생성된 Ni-B 합금도금층의 물성에 미치는 B 함량의 영향 (Influence of B Content on Properties of Ni-B Electrodeposit)

  • 이규환;장도일;권식철
    • 한국표면공학회지
    • /
    • 제37권4호
    • /
    • pp.208-214
    • /
    • 2004
  • The influence of the boron content on the various properties of Ni-B alloy films produced by electrodeposition was investigated. The considerable reduction in grain size was observed with increasing boron content. The internal stress was tensile and increased linearly with increasing boron content. Hardness increased up to $750H_{v}$ at 2 at% boron and then kept the value to 11 at% boron for as-plated Ni-B coatings. The hardness of Ni-B films increased up to $1,250H_{v}$ due to the intermetallic$ Ni_3$B precipitation by the heat treatment, and maximum hardness of each coating increases with boron content. Wear resistance decreased with increasing the boron content because of high friction coefficient and brittle fracture of film which has higher content of boron.

기능화된 다중벽 탄소나노튜브 복합재료의 제조 및 물성 평가에 대한 연구 (Manufacturing and Characterization of Nano-composites with Chemically Functionalized Multiwalled Carbon Nanotubes)

  • 박주혁;김태구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.126-131
    • /
    • 2004
  • Chemically modified multiwalled carbon nanotubes with acids were incorporated into a epoxy matrix by in situ polymerization process, to improve the transfer of mechanical load through chemical bonds, which were demonstrated by infrared spectroscopy. And the mechanical properties of epoxy/carbon nanotube composites were measured to investigate the role of carbon nanotubes. The epoxy/carbon nanotube composites shows higher tensile strength and wear resistance than existing epoxy, with 1 or 2 wt. % addition of functionalized carbon nanotubes. The tensile strength with 7 wt. % carbon nanotibes is increased by a 28% and the wear resistance in exceptionally increased by an outstanding 100 times.

  • PDF

Properties of Silica-SBR Compounds Using Cellulose Dispersant Applicable to Tire Tread Rubber

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제55권3호
    • /
    • pp.176-183
    • /
    • 2020
  • Silica-styrene butadiene rubber (Silica-SBR) compounds have been used in the preparation of tire treads. The silica dispersibility of silica-SBR compounds is related to the processability, mechanical properties, and wear resistance of tires. Recently, in order to improve the silica dispersibility of the silica-SBR compounds, the wet masterbatch (WMB) process was introduced, which is a method of mixing rubber in the water phase. We aimed to improve the silica dispersibility of the silica-SBR compounds by preparing a silica dispersant applicable to the WMB process. For this purpose, cellulose, 2-hydroxyethyl cellulose, and cellulose acetate were employed as a silica dispersant. The silica dispersibility of the compounds was measured by a moving die rheometer. Improvement in the processability of silica-SBR compounds was evaluated by the Mooney viscometer. The wear resistance of silica-SBR compounds using a cellulose dispersant was improved by up to 29%.

Fabrication and Properties of Nano-structured Ceramics

  • Ueno, Tomoyuki;Yoshimura, Masashi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.321-322
    • /
    • 2006
  • Nano-structured ceramics, which consist of structural elements with nanometer-size crystallites, are expected to show various unusual properties. We developed the novel nano-structured ceramics which consists of $Si_3N_4$ and TiN and a self-lubricant material. The ceramics was fabricated by powder metallurgy process using mechano-chemical grinding process and short-time sintering process. Each grain size of matrix and the self-lubricant particle was under about 50 nm and a few namometer. It showed high wear resistance and low friction coefficient by controlling of microstructure.

  • PDF

Hybrid Composite Nano-sized WC-Co Cemented Carbide

  • Park, Sun-Yong;Lee, Wan-Jae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.640-641
    • /
    • 2006
  • To improve the mechanical properties of WC-Co cemented carbides, the dual composite was studied. The compositions of granule and matrix were nano-sized WC-6 wt% Co(granule) and normal sized WC-20 wt% Co(matrix), respectively. The granules were grouped 50, 100 and $150\;{\mu}m$ and mixed with WC and Co powders as the volume fractions of granule to matrix were 50 to 50, 40 to 60 and 30 to 70. These compacts were sintered at $1380^{\circ}C$ for 10 minutes in vacuum. The microstructure, transverse rupture strength and wear resistance were investigated.

  • PDF

PECVD에 의해 생성된 TIBN 박막의 특성 (Properties of TiBN Films produced by PECVD)

  • 허정;유용주
    • 열처리공학회지
    • /
    • 제15권3호
    • /
    • pp.136-141
    • /
    • 2002
  • During warm and hot forging process of steels or aluminum alloys, dies are subject to early fracture, severe wear by thermo-mechanical stress. Especially, during the die-casting of aluminum alloys, the service life of dies is incredibly lowered. In this study we investigated the characteristics of TiBN films produced by PECVD. TiBN films showed very high hardness, excellent wear resistance, which could enhance the service life of die parts such as forging punch, die casting core pin successfully.

산소이온 면사에 의한 티타늄질화물 합성 및 기계적 특성에 관한 연구 (The Study for Titanium Nitride Synthesis and its mechanical properties by Nitrogen Ion Irradiation)

  • 강태만;박윤우;한전건
    • 한국표면공학회지
    • /
    • 제25권6호
    • /
    • pp.299-308
    • /
    • 1992
  • Titanium nitride(TiN) has been synthesized by nitrogen ion irradiation onto the Ti thin film deposited on STD11 and SKH9 tool materials. The effect of irradiation flux and substrate temperature on the formation behavior and mechanical properaties of TiN were investigated through X-ray diffraction analysis, hardness and pin-on-disc wear testings. Nitrogen ion irradiation onto arc evaporated Ti thin film produced TiN of < 200> orientation at elevated temperature and thereby enhancing surface microhardness by 50% at maximum. Wear resistance was also improved by nitrogen irradiation at most process conditions. The enhancement of wear resistance appeared to be more effective for the nitrogen irradiated conditions at room temperature than at elevated temperature.

  • PDF