• Title/Summary/Keyword: Wear resistance properties

Search Result 647, Processing Time 0.019 seconds

Study on the Tribo-Characteristics of Tin-Bronze Matrix Material for Brake Pad (Brake Pad용 청동기지 복합재료의 마찰.마모특성에 관한 연구(I))

  • Song, Geon;Hwang, Soon-Hong;Kong, Ho-Sung;Choi, Woong-Soo;Cheong, Dong-Yun;Huh, Moo-Young
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.18-27
    • /
    • 1996
  • An interlaboratory wear testing was performed in order to understand the friction behaviors and the wear mechanisms of the sintered composites. The specimens were the sintered bronze matrix composites having various contents of friction additives, friction control agents and reinforcements. The variation of the wear characteristics according to the constituents of the composites as well as the wear conditions was investigated by SEM, EPMA, OM, the hardness testing and the measurement of friction. The specimen having glass fiber as the matrix reinforcement showed a remarkable increase in wear resistance as increasing the content of glass fiber. Graphite particles in the composites exhibited the lubricating effect and also resulted in the lowering strength of the matrix. Addition of Mo powder to the composites led to the deterioration of wear properties at the room temperature, however, an enhanced wear properties were obtained in the containing Mo at an elevated temperature.

Friction, Wear and Scuffing Life of Piston Rings With Several Coating for Low Friction Diesel Enging (다양한 박막을 증착한 디젤 엔진용 피스톤링과 실린더 블록의 마찰 마멸 및 스커핑 수명 평가)

  • Ahn, Tae-Sik;Cho, Dae-Hyun;Oh, Chung-Soon;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • Wear and scuffing tests were conducted using friction and wear measurement of piston rings and cylinder blocks in low friction diesel engine. The frictional forces, wear amounts and cycles to scuffing in boundary lubricated sliding condition were measured using the reciprocating wear tester. The cylinder blocks were used as reciprocating specimens, and the piston rings with several coatings were used as fixed pin. Several coatings were used such as DLC, TiN, Cr-ceramic and TiAlN in order to improve the tribological characteristics. From the tests wear volume of piston ring surfaces applied various coatings were compared. During the tests coefficients of friction were monitored. Test results showed that DLC coatings showed good tribological properties. TiN and Cr-ceramic coated rings showed good wear resistance properties but produced high friction.

Effect of the Microstructrure of Rapidly Solidified Al-Pb-Cu-Mg on the Wear ProPerty (급속응고된 Al-Pb-Cu-Mg 합금의 마모특성에 미치는 미세조직의 영향)

  • 김홍물
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • Effects of the microstrucrure of rapidy solidified Al-Pb-Cu-Mg alloys on the wear investigated. In order to overcome the miscility gap between Al and pb under equilibrium conditions, both in the solid and the liquid states, the alloy were rapidy solidifies to produce them in a segregation-free condition. Although the Pb particles showed relatively fine dispersion in the Al matrix in all the alloys by this process. the Al-16Pb alloy was found to have the most favorable microstructure with discretre with discrete Pb particles of abount 0.5 ${\mu}$m in size. With the addition of Cu and Cu-Mg to Al-16Pb, cellular structures were newly formed; not seen in the binary Al-Pb alloy. Wear properties of the Al-Pb binary alloys measured as a function of the sliding speen, sliding distance, and applied load showed that the Al-16Pb alloy has the best wear resistance, as expected from the fine microstructural features in this alloy. The were resistance of the alloy containing Cu-and Cu-Mg was higher than that of the Al-16Pvb alloy, due to matrix strengthening by precipitation hardeing. The wear mechanism was identified by examining the traces and wear debris.

  • PDF

Enhancement of Wear Resistance of CoCrNiAlTi Plasma Sprayed Coatings Using Titanium Carbide

  • De-Yong Li;Chul-Hee Lee
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Large drill bits may face high hardness ore and high working pressure when working. To optimize the use effect of large drill bits and prolong the use time, it is necessary to add a layer of pressure-resistant, wear-resistant, and low-friction coating on the surface of the drill bit. In this study, CoCrNiAlTi high-entropy alloy coatings and CoCrNiAlTi (70 wt%)-TiC (30 wt%) composite coatings are successfully prepared on Q235 steel by plasma spraying. The CoCrNiAlTi (70 wt%)-TiC (30 wt%) coating consists of FCC solid solution and a small amount of TiC phase. The effect of TiC on the composition phase, microhardness, and elastic modulus of HEA coating is studied by X-ray diffractometer (XRD) and microhardness tester. The effect of TiC on the friction and wear properties of HEA coatings is investigated using a wear tester. By improving the process parameters, the metallurgical bonding between the coating and the substrate is well combined, and a coating without pores and cracks is obtained. The experimental results confirm that the microhardness, elastic modulus, and wear resistance of CoCrNiAlTi-TiC composite coating are better, and the friction coefficient is lower.

A Study on Improvement of Material Characteristics by Control of Ion Implantation (이온주입 제어에 의한 재료특성 개선에 관한 연구)

  • Yang, Young-Joon;Lee, Chi-Woo;Fujita, Kazuhisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1178-1184
    • /
    • 2008
  • In this study, techniques of ion implantation were used in order to improve the characteristics of metal materials such as the oxidation and wear resistant. In particular it is necessary to develope their oxidation and wear resistant that could be used in severe environmental conditions. There are mainly two elementary technologies including ion implantation and/or thin film coating. Ion implantation method was performed for surface modification. As a result, it was found that some ion implantations methods such as Nb, high-temperature Nb ion implantation and Nb+C combined implantation are somewhat effective for improving the oxidation resistance of TiAl alloy. Furthermore, the fluorine PBII treatment is more effective for improving the oxidation resistance of the TiAl alloy with three-dimensional shapes. The implantation of boron ion into thin film of TiN was also effective for improving the properties of materials like high temperature wear resistance. TiCrN film was applied to the actual seal ring for steam turbines, and it was observed that its sliding property showed a successfully good performance.

The Effect of SiCp Size on the Mechanical Preperties of ($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 Hybrid Mg Composites (($\textrm{Al}_2\textrm{O}_3$+SiCp)/AZ91 하이브리드 Mg 복합재료의 기계적 특성에 미치는 SiCp크기의 영향)

  • 하창식;김봉룡;조경목;박익민;최일동
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.29-33
    • /
    • 2001
  • In the present study, AZ91Mg/$\textrm{Al}_2\textrm{O}_3$ short fiber+SiC particulates hybrid metal matrix composites(MMCs) were fabricated by squeeze casting method. Different particulate sizes of 45, 29 and $9\mu\textrm{m}$ were hybridized with 5% volume fraction to investigate the effect of SiC particulates size on microstructure, mechanical and thermal properties such as hardness, flexural strength, wear resistance and thermal expansion. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements. Some aggregation of SiC particulates caused by particle pushing was observed especially in the hybrid composites containing in fine particulates($9\mu\textrm{m}$). The hardness and flexural strength were improved by decreasing particulates size, whereas wear resistance improved by increasing particulates size because of large particulates restricting matrix wear from contacted stress. Regardless of particulates size, thermal expansion of composites was the same. This may be because the content of particulates was in all cases 5 volume fraction.1

  • PDF

In-Process Detection of Flank Wear Width by AE Signals When Machining of ADI (ADI 절삭시 AE신호에 의한 플랭크 마멸폭의 인프로세스 검출)

  • 전태옥
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.71-77
    • /
    • 1999
  • Monitoring of Cutting tool wear is a critical issue in automated machining system and has been extensively studied for many years. An austempered ductile iron(ADI) exhibits the excellent mechanical properties and the wear resistance. ADI has generally the poor machinability due to the characteristic. This paper presents the in-process detection of flank wear of cutting tools using the acoustic emission sensor and the digital oscilloscope. The amplitude level of AE signal(AErms) is mainly affected by cutting speed and it is proportional to cutting speed. There have been the relationship of direct proportion between the amplitude level of AE signals and the flank wear width of cutting tool. The flank wear with corresponding to the tool life is successfully detected with the monitor-ing system used in this study.

  • PDF

Wear behavior of $Si_3N_4$-SiC nanocomposite in water

  • Kim, S. H.;Lee, S. W.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.187-187
    • /
    • 1997
  • Silicon nitride is the most excellent materials among structural ceramics. It has been reported that fracture toughness was improved with adding second phase particles, whisker, fiber etc. However, containing of second phase particles enhanced fracture toughness, however flexural strength was degraded. As adding nanosize SiC particles into silicon nitride, the physical properties of fluxural strength, fracture toughness, the modulus of elasticity. In this study, 2wt% $Al_2$O$_3$ and 4 wt% $Y_2$O$_3$ were added into UBE E-10 and 0, 10, 20, 30, 40, 50 vol% nano-SiC powder (Sumitomo T1 powder) were added, respectively. It is hot pressed at 185$0^{\circ}C$ for 1 hour. Most of structural ceramics for engineering application are wear resistance. In this study, wear behaviors (in water) of silicon nitride with varying the amount of nano-size silicon carbide were investigated, and was compared to physical properties. Simultaneously wear mechanism will be found out.

  • PDF

Wear and Mechanical Properties of B4C/Al6061 Composites Fabricated by Stir Casting and Rolling Process (교반주조 및 압연공정으로 제조된 B4C/Al6061 금속복합재료의 마모 및 기계적 특성 연구)

  • Lee, Donghyun;Oh, Kanghun;Kim, Junghwan;Kim, Yangdo;Lee, Sang-Bok;Cho, Seungchan
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.241-246
    • /
    • 2020
  • In this study, aluminum (Al) alloy matrix composites in which B4C particles were uniformly dispersed was manufactured through stir casting followed by hot rolling process. The microstructure, mechanical properties, and wear resistance properties of the prepared composites were analyzed. The composite in which the 40 ㎛ sized B4C particles were uniformly dispersed increased the tensile strength and improved wear performance as the volume ratio of the reinforcement increased. In the case of the 20 vol.% composite, the tensile strength was 292 MPa, which was 155% higher than that of the Al6061. As a result of the wear resistance test, the wear width and depth of the 20 vol.% B4C/Al6061 composites were 856 ㎛, and 36 ㎛, and the friction coefficient was 0.382, which were considerably superior to Al6061.

Improvement in Mechanical and Wear Properties of WC-Co by Ultrasonic Nanocrystal Surface Modification Technique (초음파나노표면개질 기술을 적용한 초경의 기계적특성 및 마모 연구)

  • Lee, Seung-Chul;Kim, Jun-Hyong;Choi, Gab-Su;Jang, Young-Do;Amanov, Auezhan;Pyun, Young-Sik
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.56-61
    • /
    • 2015
  • In this study, we investigated the effectiveness of an ultrasonic nanocrystal surface modification (UNSM) technique on the mechanical and wear properties of tungsten carbide (WC). The UNSM technique is a newly developed surface modification technique that increases the mechanical properties of materials by severe plastic deformation. The objective of this study was to improve the wear resistance of press die made of WC by applying the UNSM technique. We observed the microstructures of the untreated and UNSM-treated specimens using a scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) was used to investigate the chemical composition. The SEM observations showed the pore size and the number of pores decreased after the UNSM treatment. We assessed the wear behavior of both the untreated and UNSM-treated specimens using a scratch test. The test results showed that the wear resistance of the UNSM-treated specimens increased by about 46% compared with the untreated specimens. This may be attributed to increased hardness, reduced surface roughness, induced compressive residual stress, and refined grain size following the application of the UNSM technique. In addition, we found that the UNSM treatment increased the carbon concentration to 63% from 33%. We expect that implementing the findings of this study will lead to an increase in the life of press dies.