• Title/Summary/Keyword: Wear rate

Search Result 1,077, Processing Time 0.028 seconds

Dynamic Compressive Creep of Extruded Ultra-High Molecular Weight Polyethylene

  • Lee, Kwon-Yong;David Pienkowski;Lee, Sungjae
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1332-1338
    • /
    • 2003
  • To estimate the true wear rate of polyethylene acetabular cups used in total hip arthroplasty, the dynamic compressive creep deformation of ultra-high molecular weight polyethylene (UHMWPE) was quantified as a function of time, load amplitude, and radial location of the specimen in the extruded rod stock. These data were also compared with the creep behavior of polyethylene observed under static loading. Total creep strains under dynamic loading were only 64%, 70%, and 61% of the total creep strains under static loading at the same maximum pressures of 2 MPa,4 MPa, and 8 MPa, respectively. Specimens cut from the periphery of the rod stock demonstrated more creep than those cut from the center when they were compressed in a direction parallel to the extrusion direction (vertical loading) whereas the opposite was observed when specimens were compressed in a direction perpendicular to the extrusion direction (transverse loading). These findings show that creep deformation of UHMWPE depends upon the orientation of the crystalline lamellae.

Product Characteristics of Clothing and Risk Perception and Risk Reduction Behavior of Consumers. (의복상품특성에 따른 소비자 위험지각 및 위험감소행동에 관한 연구)

  • 김찬주
    • Journal of the Korean Society of Costume
    • /
    • v.25
    • /
    • pp.41-62
    • /
    • 1995
  • This research was intended to investigate how risk perception and risk reduction behavior by consumers differ according to different product characteristics of clothing. The responses of 318 female college students living in Seoul and surrounding vicinities were collected and analyzed. Inner wear, blue-jean pants, coat were selected as representing each clothing product characteristics. Frequencies distribution, regression and correlation coefficient were utilized for statistical analysis. Results are as follows. 1. The type of perceived risk and risk reduction behavior differed according to product characteristics of clothing. Physical and performance risk were more highly perceived for the purchase of innerwear. However, for the purchase of jean pants and coat, socio-psycho-logical and economic risk were also perceived highly because the rate of fashion change, social symbolism, and coordination with other clothing items become more important characteristics. To reduce perceived risk, dependency on past purchase experiences and shop-ping were mostly preferred method regardless of product characteristics of clothing. 2. Risk type as determinant variables for predicting overall risk differed according to product characteristics of clothing. But fashionability and usefulness were common determinant risk variables, which identifies typical characteristics of clothing product.

  • PDF

Effect of Wearing Micro-Current Apparel on the Physiological Response (미세전류를 이용한 의류제품 착용이 인체 생리적 반응에 미치는 영향)

  • Kang, Mi-Jeong;Kwon, Young-Ah
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.959-965
    • /
    • 2011
  • The purpose of this study was to evaluate the effect of wearing induced micro current brassiere on the physiological responses of women. Four women participated to wear a different brassiere condition: with and without micro current chips. Subjects were carried out after wearing the induced micro current brassiere for 120minutes. Eardrum temperature, skin temperature, blood pressure, heart rate, thermal perception, humid perception, and comfort perception were obtained. The results were as follows. The brassiere with micro current chips showed better performance on weight loss than the brassiere without micro current chips. Participants in a higher level of BMI were more likely to lose greater weight. Mean skin temperatures decreased with micro current chips. Participants felt more comfortable for walking in micro current brassiere than in brassiere without micro current chips.

Optimum Grinding Condition for Electroplated Diamond Wheel in Form Grinding of Ferrite (페리이트의 총형 연삭에서 전착 다이아몬드 연삭숫돌의 최적 연삭조건)

  • 김성청;이재우;김관우;한상욱;황선희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.29-33
    • /
    • 1996
  • This paper aims to clatify the potimum grinding condition for the electroplated diamond wheel in form grinding of Sr-ferrite. The main conclusions obtained were as follows. (1) The flexural strength and surface roughness of ferrite became the highest at the peripheral wheel speed of 1700m/min. (2) In the case of depth of cut larger than 0.4mm, crack layers is induced in the ground surface, the fracture type of chips exhibits slight ductile mode in the depth of cut smaller than 0.2mm. (3) When the depth of cut exceed 0.6mm, the tool life becomes extermely short due to large chipping and brackage. However, at the depth of cut .geq. 0.05mm, the diamond grain shows abrasive wear. (4) The flexural strength and surface roughness increases in proportion to the feed rate.

  • PDF

Design of an air-cooled high-pressure 3-stage reciprocating air compressor, applied to the starting of diesel engines (디젤엔진 시동용 공냉식 고압 3단 왕복동 공기압축기의 설계)

  • 이안성;김영철;정영식;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 1998
  • A 150 m$\^$3//hr, 30 kg/cm$\^$2/, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines of ships. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially a volumetric efficiency of 80%. Temperature and stress analysis of the 1st stage cylinder are performed using axisymmetric FEM modelings. The dynamics of valve system is analyzed and stress at the 1st stage valve seat caused by valve impact is evaluated. To reduce friction loss and wear at the compressor engine system tribological design issues are reviewed and good design practices are suggested. Finally, forced-air pin-type interstage coolers are designed to dissipate generated compression heat at each stage.

  • PDF

Degradation characteristics of pumps in nuclear power plants (원전 펌프의 성능저하 특성)

  • Lee, D.H.;Park, S.G.;Hong, S.D.;Lee, B.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.593-598
    • /
    • 2008
  • In the present study, degradation characteristics of pumps in nuclear power plants were investigated to provide the information of degradation mechanism and stressors. The failure records of pumps for the periods 2000 to 2006 on INPO(Institute of Nuclear Power Operations) EPIX(Equipment Performance and Information Exchange System) DB were reviewed. The 1,834 failure records reveal that the critical areas of pump failures are bearing, mechanical seal, gasket/o-ring, shaft, impeller, coupling and packing. Based on the failure rate of critical areas, the important degradation mechanism and stressors were determined. Additionally, the relationship between degradation mechanism and stressors such as wear was examined. Finally, the monitoring parameters related to degradation and stressors were discussed for the future development of degradation evaluation and prognosis technology of pumps.

  • PDF

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(1) (환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(I))

  • Hwang, Joon;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.73-79
    • /
    • 2002
  • This paper presents the experimental results to verify the environmental consciousness with economic balances due to cutting fluid behaviors, effectiveness in machining process. Even though cutting fluid improves the Productivity through the cooling, lubricating effects, its environmental impact is also increased according to the cutting fluid usage. The primary mechanism considered in this study is the spin-off motion of fluids away from rotating workpiece. In this study some parameters arc adopted to analyze the productivity(tool wear), environmental impact(mist diffusion rate). The results present talc criteria for the resonable cutting fluid usage quantitative1y to develop the environmentally conscious machining process.

A Study on Guide System for Optimization of Machining Process (기계가공 최적화를 위한 가이드시스템에 관한 연구)

  • Choi, Jong-Geun;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.71-83
    • /
    • 1989
  • The optimization in the machining process has been a long-standing goal of the manufacturing community. The optimization is composed of two main subjects;one is to select an optimum cutting condition, and the other is to detect the emergency situation and take necessary actions in real-time base. This paper proposes a reliable and practical guide system whose purpose is the optimization of cutting conditions, and the detection of tool failure in the machining process. The optimal cutting conditions are determined through the estimation of tool wear rate and the establishment of access- ible field from the measured cutting temperature and force. Tool breakage is detected by the normal force component acting on minor flank face extracted from on-line sensed feed force and radial force. In experiments, the proposed guide system has proved availability for the decision of reliable cutting conditions for the given tool-work system and the detection of tool breakage in ordinary cutting environments.

  • PDF

Optimization of a geometric form and cutting conditions of a metal slitting saw by experimental method (실험적 방법을 통한 Metal slitting saw의 형상 및 절삭 조건의 최적화)

  • 정경득;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.934-938
    • /
    • 2000
  • Built-up edge affects the surface integrity of the machined surface and tool wear. Tool geometry and cutting conditions are very important factors to remove BUE. In this paper, we optimized the geometry of the metal slitting saw .1nd cutting conditions to remove BUE by the experiment. In general, the metal slitting saw is plain milling cutter with thickness less of a 3/16 inch. This is used for cutting workpiece where high dimensional accuracy and surface finish are necessary. The experiment was planned with Taguchi method that is based on the orthogonal array of design factors(coating, rake angle, number of tooth, cutting speed, feed rate). Response table was made by the value of the surface roughness, the optimized tool geometry and cutting conditions through response table could be determined. In addition. the relative effect of factors were identified by the variance analysis. filially. coating and cutting speed turned out important factors.

  • PDF

Effect of Ball End Mill Geometry and Cutting Conditions on Machinability of Hardened Tool Steel

  • Jang, Dong-Y.;Won, S.-T.
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Roughing of tool steel in its hardened state represents a real challenge in the die and meld industry and process improvement depends on research of tool material, coating technique, and lubrication. However, roughing of hardened steels generates extreme heat and without coolant flooding, tool material cannot withstand the high temperature without choosing the right tools with proper coating. This research conducted milling tests using coated ball end mills to study effects of cutting conditions and geometric parameters of ball end mills on the machinability of hardened tool steel. KP4 steel and STD 11 heat treated steels were used in the dry cutting as the workpiece and TiAIN coated ball end mills with side relief angle of 12$^{\circ}$ was utilized in the cutting tests. Cutting forces, tool wear, and surface roughness were measured in the cutting tests. Results from the experiments showed that 85 m/min of cutting speed and 0.32 mm/rev of feed rate were optimum conditions for better surface finish during rough cutting and 0.26mm/rev with the same cutting speed are optimum conditions in the finish cutting.