• 제목/요약/키워드: Wear of exhaust valve seat

검색결과 14건 처리시간 0.037초

엔진내구시험을 통한 Valve Train 수명예측에 관한 연구 (2) (A Study of Valve-train Life Time Estimate in Engine Durability Test (2))

  • 김재진;이환희;명광희;민병두
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.75-80
    • /
    • 2014
  • In previous study, make an attempt to estimate exhaust valve seat and seat-ring wear acceleration factor for engine durability test with measuring and consideration of wear mechanism. But found abnormal initial wear rate in exhaust valve seat-ring. And have to improve exhaust valve seat-ring wear rate for reliability reason, because next GDI/Turbo engine is based on this engine and GDI/Turbo engine have higher combustion pressure and higher thermal load. In this study, Trying to find the cause of abnormal wear factor, improve valve-train durability by change specification & design of parts and verify variant parts for improving durability of valve-train. And then I would like to propose a design guide line of valve-train system in a reliability point of view, besides make a complement of previous study.

디젤엔진 배기밸브와 시트 인서트의 밸브 재질에 따른 마모 및 매칭성 연구 (A Study of wear and Matching of Diesel Engine Exhaust Valve and Seat Insert Depending on Valve Materials)

  • 김양수;전경진;홍재수;정동택
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.108-115
    • /
    • 2008
  • The wear on engine valve and seat insert is one of the most important factors affecting engine performance. The engine valve and seat insert must be able to withstand the severe environment that is created by: high temperature exhaust gases generated while the engine is running, rapid movement of the valve spring, high pressure generated in the explosive process. In order to study such problems, a simulator has been developed to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focused on the test of various degrees of wear on four different exhaust valve materials such as HRV40, HRV40-FNV (face nitrided valve), STL #32, STL #6,. Throughout all tests performed in this study, the outer surface temperature of the seat insert was controlled at $350^{\circ}C$, the cycle number was $4.0{\times}10^6$, the test load was 6860 N, the fuel was LPG the test speed was 20 Hz (2400 RPM) and the seat insert material was HVS1-2. The mean (standard deviation) maximum roughness of the exhaust valve and seat insert was $25.44\;(3.16)\;{\mu}m$ and $27.53\;(3.60)\;{\mu}m$ at the HRV40, $21.58\;(2.38)\;{\mu}m$ and $25.94\;(3.07)\;{\mu}m$ at the HRV40-FNV, $36.73\;(8.98)\;{\mu}m$ and $61.38\;(7.84)\;{\mu}m$ at the STL #32, $73.64\;(23.80)\;{\mu}m$ and $60.80\;(13.49)\;{\mu}m$ at the STL #6, respectively. It was discovered that the maximum roughness of exhaust valve was lower as the high temperature hardness of the valve material was higher under the same test conditions such as temperature, test speed, cycle number, test load and seat insert material. The set of the HRV40-FNV exhaust valve and the HVS1-2 seat insert showed the best wear resistance.

Development of Exhaust Valve Seat Material for the High Performance Engine

  • Oshige, Hiroshi;Takahashi, Teruo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.397-398
    • /
    • 2006
  • In late years, from a trend for ecology of auto motive engine, low emission and low fuel consumption of engine become a social assignment. At the same time, the high output (high efficiency) is required, too. In order to meet those requirements, in comparison with conventional engines, lean A/F (Air fuel ratio) setting is becoming popular for the high performance engines of late years. Exhaust valve seat (sintered material) used in these engines has a problem in wear resistance, because it is exposed to the surroundings that is clean and a high temperature in comparison with the conventional engines. Therefore, wear mechanism with lean A/F of engine was analyzed.The exhaust valve seat (sintered material), that was superior in wear resistance, was developed.

  • PDF

A Study on Wear and Wear Mechanism of Exhaust Valve and Seat Insert Depending on Different Speeds Using a Simulator

  • Hong, Jae-Soo;Chun, Keyoung-Jin;Youn, Young-Han
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2052-2060
    • /
    • 2006
  • The wear of engine valve and seat insert is one of the most important factors which affect engine performance. Because of higher demands on performance and the increasing use of alternative fuel, engine valve and seat insert are challenged with greater wear problems than in the past. In order to solve the above problems, a simulator was developed to be able to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focuses on the different degrees of wear at three different singular test speeds (10 Hz, 25 Hz & multi-Hz). For this study, the temperature of the outer surface of the seat insert was controlled at 350$^{\circ}C$, and the test load was 1960 N. The test cycle number was $6.0{\times}10^6$. The mean ($\pm$standard error) wear depth of the valve at 10 Hz and 25 Hz was 45.1 ($\pm$3.7)$\mu$m and 81.7 ($\pm$2.5)$\mu$m, respectively. The mean wear depth of the seat insert at 10 Hz and 25 Hz was 52.7 ($\pm$3.9)$\mu$m and 91.2 ($\pm$2.7)$\mu$m, respectively. In the case of multi-Hz it was 70.7 ($\pm$2.4)$\mu$m and 77.4 ($\pm$3.8)$\mu$m, respectively. It was found that higher speed (25 Hz) cause a greater degree of wear than lower speed (10 Hz) under identical test condition (temperature, valve displacement, cycle number and test load). In the wear mechanisms of valves, adhesive wear, shear strain and abrasive wear could be observed. Also, in the wear mechanisms of seat inserts, adhesive wear, surface fatigue wear and abrasive wear could be observed.

Exhaust valve seat 마모에 미치는 산화영향 (Effects of oxidation on the exhaust valve seat wear)

  • 오중석;김영우;정승철;길정기
    • 오토저널
    • /
    • 제15권4호
    • /
    • pp.1-7
    • /
    • 1993
  • 최근 엔진의 고성능, 고출력화, 저연비화 Maintenance Free화에 따라 엔진의 부하가 증대되었고, Valve Seat에 대해서도 내마모성, 내열성, 내식성 향상이 요구되고 있다. 특히 무연가솔린과 LPG사용으로 내구성을 갖는 High Performance의 Valve Seat 재질을 요구하게 되었고, 엔진의 높은 작동온도등 가혹한 조건하에서 'Recession'이라 일컬어지는 Seat마모가 생기게 된다. Valve Seat는 일반적으로 분말야금법에 따라 제조되고 있으며, 엔진조건에 따라 여러가지의 재질이 사용되며, 높은 온도에서 열전도성과 기공의 산화방지 및 Valve 내구성 향상의 효과를 얻기 위하여 동용침을 하여 사용하는 추세이다. 본 실험에서는 Valve Seat 기공부위의 산화와 마모특성을 조사하기로 한다.

  • PDF

5% 황산용액에서 배기밸브 보수 용접부의 부식 특성에 미치는 용접방법과 용접봉의 영향-1 (Effect of Welding method and Welding Material to Corrosion Property of Repair Weld Zone for Exhaust Valve in 5% H2SO4 Solution -1)

  • 김진경;조황래;이명훈;김윤해;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.744-752
    • /
    • 2007
  • Recently a fuel oil of the diesel engine in the ship is being changed with low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine like cylinder liner ring groove of piston crown, spindle and seat ring of exhaust valve are increased with using of heavy oil of low quality In particular the degree of wear and corrosion in between valve spindle and seat ring are more serious compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weld to the valve spindle and seat ring is a unique method to prolong the life of the exhaust valve in an economical point of view In this study. corrosion property of both weld metal zone and base metal was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 5% $H_2SO_4$ solution. in the case of being welded with some welding methods and welding materials to the exhaust valve specimen as the base metal. In all cases. the values of hardness of the weld metal zone were more high than that of the base metal. And their corrosion resistance were also superior to the base metal. The weld metal of A2F(AC SMAW: 2 pass welding with foreign electrode) showed a relatively good results to the corrosion resistance as well as the hardness compared to the ether welding methods and welding materials. Moreover it indicated that hardness of the weld metal by the domestic electrode was considerably high compared to that of the foreign electrode.

엔진 물통로 내부 벽면 스케일 축적이 LPG 엔진의 열적 내구성에 미치는 영향에 대한 연구 (A Study on Effect of Scale Formation in Water Jacket on Thermal Durability in LPG Engine)

  • 류택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the effects of scale formation in engine water jacket upon the thermal durability of engine itself and its component parts were studied. To understand the effect of quality of water, a full load engine endurance test for 50 hours was carried out with not-treated underground water. The followings were found through the tested engine inspection after the endurance test; 1-2 mm thick scale formation in the engine water jacket, valve seat wear, piston top land scuffing, piston pin stick, and cylinder bore scuffing in siamese area. In order to understand the causes of above test results, the heat rejection rate to coolant, the metal surface temperature of combustion chamber, and the oil and exhaust gas temperatures were measured and analyzed. The scale formed in the engine water jacket played a role as thermal insulator. The scale formed in the engine reduced the heat rejection rate to coolant and it caused to increase the metal surface temperature. The reduced heat rejection rate to coolant increased the heat rejection rate to oil and exhaust gas and increased the oil and exhaust gas temperature. Also, the reasons of valve seat wear, piston top land scuffing and cylinder bore scuffing, and piston pin stick quantitatively analyzed in this paper.

  • PDF

사이클 수 증가에 따른 엔진밸브 및 시트인서트 착좌면 마모 (A Wear of Engine Valve and Seat Insert Seating Face Depending on Cycle Numbers)

  • 김재희;전경진;홍재수;윤영한
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.101-107
    • /
    • 2007
  • This study investigated the wear of the valve and seat insert seating faces. A tester, an exhaust valve and a seat insert were used. Test variables were cycle numbers ($2{\times}10^6,\;4{\times}10^6,\;6{\times}10^6\;and\;8{\times}10^6$) and Hz (10Hz and 25Hz). The other test conditions such as temperature ($350^{\circ}C$), fuel (LPG) and load (1960N) were fixed. The 10Hz tests indicated that the average Rmax of the valve increased at the rate of $7.76{\mu}m/10^6$ cycles starting from $29.42{\mu}m$ at the $2{\times}10^6$ cycles and that of the seat insert increased at the rate of $8.57{\mu}m/10^6$ cycles starting from $34.19{\mu}m$ at the $2{\times}10^6$ cycles. The 25Hz tests indicated that the average Rmax of the valve increased at the rate of $1.58{\mu}m/10^6$ cycles starting from $74.2{\mu}m$ at the $2{\times}10^6$ cycles and that of the seat insert increased at the rate of $1.25{\mu}m/10^6$ cycles starting from $83.95{\mu}m$ at the $2{\times}10^6$ cycles. The tribochemical reaction product covered the two seating faces, preventing the wear of the seating faces. As cycle numbers became greater, the average Rmax of the seating faces became greater, but the increase rate varied significantly depending on the Hz. The wear mechanism of the two faces was investigated through the tribochemical reaction.