• Title/Summary/Keyword: Wear monitoring

Search Result 288, Processing Time 0.022 seconds

Tool Wear Monitoring Scheme by Modeling of the Cutting Dynamics by Time-series Method (Time-series 방법으로 모델링한 절삭역학에 의한 공구마모감시방법)

  • Kwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.94-103
    • /
    • 1993
  • In this work, the imaginary part of the inner modulation transfer function of the cutting dynamics is introduced for tool wear monitoring. Time-series method is utilized to construct the general three dimensional cutting dynamics whose imaginary part of the inner modulation transfer funcition shows the proportionality to tool wear at the natural frequency of the machine tool dynamics. Thus model is reduced to single-input single-output model without altering the proportionality characteristics to tool wear and implemented to the dual computer system in which one computer performs measurement while the other calculates the imaginary part of the inner modulation transfer function of the cutting dynamics by the batch least square method. The values of the imaginary part at the natural requency of the machine tool structure in the cutting direction are compared to the one calculated during machining with a brand new tool to decide the current status of the tool. The experiments shows the relevance of the proposed concept.

  • PDF

An Experimental Study on the Wear and Vibrational Characteristics Resulted from Rotordynamics System Failure(I) (회전기계 파손에 따른 마멸 및 진동 특성(I))

  • Kang, Ki-Hong;Yoon, Eui-Sung;Chang, Rae-Hyuk;Kong, Ho-Sung;Kim, Seong-Jong;Lee, Yong-Bok;Kim, Chang-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.43-52
    • /
    • 2001
  • Condition monitoring plays a vital role since it sustains the reliable operation of industrial plant and machinery in the pursuit of economic whole life operation. In order to achieve this goal, it is needed to monitor various parameters of mechanical system such as vibration, wear, temperature, and etc., and finally to diagnosis the root causes of any possible abnormal machine condition. In this work, we constructed a rotor system where various types of functional machine failures occurred frequently in industry were induced. Characteristics of the machine failure were monitored simultaneously by the on-line measurement of vibration, wear and temperature. Result showed that these parameters responded differently to the induced functional machine failure. The availability of each parameter on effective condition monitoring was discussed in this work.

  • PDF

An Experimental Study on the Wear and Vibrational Characteristics of a Loosely supported proceeding Bearing (헐겁게 지지된 저널베어링의 마모 및 전동특성 실험적 연구)

  • Chang, Rae-Hyuk;Pyun, Sung-Kwan;Yoon, Eui-Sung;Kong, Ho-Sung;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.53-62
    • /
    • 2002
  • Condition monitoring plays a vital role since it sustains reliable operation of industrial plants and machinery in the pursuit of economic whole life operation. In order to achieve this goal, it is needed to monitor various parameters of mechanical system such as vibration, wear, temperature and etc., and finally to diagnosis the root causes of any possible abnormal machine condition. In this work, a machine failure caused by mechanical looseness was experimentally simulated and on-line measurement of the vibration, wear and temperature were simultaneously measured. For the quantitative analyses of machine wear, several statistical parameters of the wear particle size distribution were obtained through the center moment method of the Weibull distribution function, and they were compared to vibrational characteristics. Results showed that the wear and vibrational characteristics did not reveal a strong correlation each other in a loosely supported proceeding bearing.

  • PDF

A Study on Statistical Classification of Wear Debris Morphology

  • Cho, Unchung
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • In this paper, statistical approach is undertaken to investigate the classification of wear debris which is the key function of objective assessment of wear debris morphology. Wear tests are run to produce various kinds of wear debris. The images of wear debris from wear tests are captured with image acquisition equipment. By thresholding, two-dimensional binary images of wear debris are made and, then, morphological parameters are used to quantify the images of debris. Parametric and nonparametric discriminant method are employed to classify wear debris into predefined wear conditions. It is demonstrated that classification accuracy of parametric and nonparametric discriminant method is similar. The selected use of morphological parameters by stepwise discriminant analysis can generally improve the classification accuracy of parametric and nonparametric discriminant method.

  • PDF

Review of Application Cases of Machine Condition Monitoring Using Oil Sensors (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰(적용사례))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.307-314
    • /
    • 2020
  • In this paper, studies on application cases of machine condition monitoring using oil sensors are reviewed. Owing to rapid industrial advancements, maintenance strategies play a crucial role in reducing the cost of downtime and improving system reliability. Consequently, machine condition monitoring plays an important role in maintaining operation stability and extending the period of usage for various machines. Machine condition monitoring through oil analysis is an effective method for assessing a machine's condition and providing early warnings regarding a machine's breakdown or failure. Among the three prevalent methods, the online analysis method is predominantly employed because this method incorporates oil sensors in real-time and has several advantages (such as prevention of human errors). Wear debris sensors are widely employed for implementing machine condition monitoring through oil sensors. Furthermore, various types of oil sensors are used in different machines and systems. Integrated oil sensors that can measure various oil attributes by incorporating a single sensor are becoming popular. By monitoring wear debris, machine condition monitoring using oil sensors is implemented for engines, automotive transmission, tanks, armored vehicles, and construction equipment. Additionally, such monitoring systems are incorporated in aircrafts such as passenger airplanes, fighter airplanes, and helicopters. Such monitoring systems are also employed in chemical plants and power plants for managing overall safety. Furthermore, widespread application of oil condition diagnosis requires the development of diagnostic programs.

Adaptive Milling Process Modeling and Nerual Networks Applied to Tool Wear Monitoring (밀링공정의 적응모델링과 공구마모 검출을 위한 신경회로망의 적용)

  • Ko, Tae-Jo;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.138-149
    • /
    • 1994
  • This paper introduces a new monitoring technique which utilizes an adaptive signal processing for feature generation, coupled with a multilayered merual network for pattern recognition. The cutting force signal in face milling operation was modeled by a low order discrete autoregressive model, shere parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(recursive least square) method with discounted measurements. The influences of the adaptation algorithm parameters as well as some considerations for modeling on the estimation results are discussed. The sensitivity of the extimated model parameters to the tool state(new and worn tool)is presented, and the application of a multilayered neural network to tool state monitoring using the previously generated features is also demonstrated with a high success rate. The methodology turned out to be quite suitable for in-process tool wear monitoring in the sense that the model parameters are effective as tool state features in milling operation and that the classifier successfully maps the sensors data to correct output decision.

  • PDF

Tool Life Monitoring using AE Signal in Gear Shaping (기어가공식 AE 신호를 이용한 공구수명의 감시)

  • 최성필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.130-134
    • /
    • 1996
  • The characteristics of AE(Acoustic Emission) signal is related to cutting conditio, tool material, and tool geometry in metal cutting. The relation between AE signal and tool life was investigated experimentally. Experiment is carried out by gear shaping and SCM 420 workpiece. AE RMS voltage were increased according totool wear. It is suggested that maximum value of AE RMS voltage is an effective parameter to monitor tool life.

  • PDF

Detection of Tool Wear using Cutting Force Measurement in Turning (선삭가공에서 절삭력을 이용한 공구마멸의 감지)

  • 윤재웅;이권용;이수철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.68-75
    • /
    • 2000
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system. A major topic relevant to metal-cutting operations is monitoring tool wear, which affects process efficiency and product quality, and implementing automatic tool replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. Cutting force components are divided into static and dynamic components in this paper, and the static components of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force disparities are defined in this paper, and the relationships between normalized disparity and flank wear are established. Finally, Artificial neural network is used to learn these relationships and detect tool wear. According to the proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF

Monitoring of Micro-Drill Wear by Using the Machine Vision System (머신비전 시스템을 이용한 마이크로드릴 마멸의 상태감시)

  • Choi Young-Jo;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.713-721
    • /
    • 2006
  • Micro-drill wear deteriorates accuracy and productivity of the micro components. In order to improve productivity and qualify of micro components, it is required to investigate micro-drill wear exactly. In this study, a machine vision system is proposed to measure the wear of micro-drills using a precision servo stage. Calibration experiments are conducted to compensate for the machine vision system. In this paper, worn volume, area and length are defined as wear amounts. Micro-drill wear is reconstructed as the 3D topography and the quantized wear amount by using the shape from focus (SFF) method and wear parameters. Experiments have been conducted with HSS twist micro-drills and SM45C carbon steel workpieces. Validity of the proposed machine vision system is confirmed through experiments.

Modeling of Cutting Parameters and Optimal Process Design in Micro End-milling Processes (마이크로 엔드밀링 공정의 절삭계수 모델링 및 최적 공정설계)

  • Lee, Kwang-Jo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.261-269
    • /
    • 2009
  • Micro end-milling process is applied to fabricate precision mechanical parts cost-effectively. It is a complex and time-consuming job to select optimal process conditions with high productivity and quality. To improve the productivity and quality of precision mechanical parts, micro end-mill wear and cutting force characteristics should be studied carefully. In this paper, high speed machining experiments are studied to construct the optimum process design as well as the mathematical modeling of tool wear and cutting force related to cutting parameters in micro ball end-milling processes. Cutting force and wear characteristics under various cutting conditions are investigated through the condition monitoring system and the design of experiment. In order to construct the cutting database, mathematical models for the flank wear and cutting force gradient are derived from the response surface method. Optimal milling conditions are extracted from the developed experimental models.

  • PDF