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A Study on Statistical Classification of Wear Debris Morphology
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MEMS Lab., Samsung Advanced Institute of Technology, Kiheung, Korea

Abstract : In this paper, statistical approach is undertaken to investigate the classification of wear debris which is the key
function of objective assessment of wear debris morphology. Wear tests are run to produce various kinds of wear debris. The
images of wear debris from wear tests are captured with image acquisition equipment. By thresholding, two-dimensional binary
images of wear debris are made and, then, morphological parameters are used to quantify the images of debris. Parametric and
nonparametric discriminant method are employed to classify wear debris into predefined wear conditions. It is demonstrated
that classification accuracy of parametric and nonparametric discriminant method is simiar. The selected use of morphological
parameters by stepwise discriminant analysis can generally improve the classification accuracy of parametric and

nonparametric discriminant method.
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Introduction

Wear debris analysis has been a subject of practical and
economical interest for many years, since it is possible to
determine wear modes in a machine from observation of the
debris in the lubricant without requiring access to the wear
surfaces themselves [1]. Microscopic wear particles
transported through oil-wetted systems are unique, having
individual characteristics which bear evidence of the
conditions under which they were formed. Careful
examination of the quantity, size, composition, and
morphology of particles can yield specific information about
the operating condition of the moving surfaces of the machine
elements from which they were produced.

Wear debris have been systematically classified into different
wear regimes so that observed wear debris features can be
correlated with possible wear situations [2]. This may be the best
way in wear debris analysis, but there are few cases where one
can be sure of the cause of the particular debris. Therefore, one
often needs to rely solely on the appearance and from that
appearance, suggest a likely source [3]. Although visual
assessment of wear debris by microscopy is a useful condition
monitoring technique, the use has been limited by several
drawbacks. The interpretation procedure of wear debris is slower
and more expensive than other methods. It is subject to
individual judgment, and it requires skilled interpretation. The
results are not quantitative, and may not be precisely reproduced.
To overcome subjectivity, image processing techniques and
numerical parameters have been applied to quantify debris
morphology {4,5]. However, specific methodologies which can
utilize the data of morphological parameters of wear debris for

*Corresponding author; Tel: 82-31-280-8044; Fax: 82-31-280-6955
E-mail: cho@sait.samsung.co.kr

classification of wear conditions have not been developed.
Development of on-line and real-time optical debris monitoring
system also requires automatic classification of wear debris for
an early warning of machinery failures.

This work investigates the statistical classification of wear
debris morphology with respect to wearing conditions to
reduce the subjectivity of optical debris monitoring. Parametric
and nonparametric discriminant methods are applied to
classify wear debris into wear conditions, and their
classification accuracy is studied.

Experiments

Five test variables are chosen for wear tests: normal load,
contact geometry, surface roughness, lubricating oil and
material combination. Block-on-ring and cylinder-on-ring
model tests are run to generate wear debris of different
categories under various wear conditions-three different
loading conditions, two different material combinations, two
different types of contact geometry, two different surface
roughnesses of specimen, and two different oils, as
summarized in Table 1. Wear tests are designed so that a single
wear variable is different in two wear tests. The sliding speed
of the ring is 0.0082 m/s. Aluminum 6061 (110 DPH Vickers)
and brass 360 (135 DPH Vickers) are used for the specimens
of blocks and cylinders. SAE 10W engine lubricant and extra
heavy mineral oil, which are chemically dissimilar, are used to
lubricate contact surface. The viscosity and specific gravity of
the extra heavy mineral oil are 72.76 cSt at 310 K, 78.84 cSt at
372 K and 0.8750-0.8830, respectively. The supply of lubricant
is maintained by dropping oil onto a rotating ring, and the used
oil that drops from the test ring by gravity is collected in a
container. After wear tests, the collected oil is used to capture
the images of wear debris.
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Table 1. Wear test conditions

Test Test conditions

1 brass block (Ra: 0.04 ym)-on-steel ring (Ra: 0.08 ym) 266.9 N, SAE 10W
2 brass block (Ra: 0.04 um)-on-steel ring (Ra: 0.08 ym) 3114 N, SAE 10W
3 brass block (Ra: 0.04 um)-on-steel ring (Ra: 0.08 ym) 3559 N, SAE 10W
4 brass cylinder (Ra: 0.04 um)-on-steel ring (Ra: 0.08 um) 2669 N, SAE 10W
5 brass cylinder (Ra: 0.04 ym)-on-steel ring (Ra: 0.08 um) 3114 N, SAE 10W
6 brass cylinder (Ra: 0.04 um)-on-steel ring (Ra: 0.08 um) 3559 N, SAE 10W
7 brass block (Ra: 0.04 ym)-on-steel ring (Ra: 0.16 um) 3114 N, SAE 10W
8 aluminum block (Ra: 0.04 um)-on-steel ring (Ra: 0.08 um) 311.4 N, mineral

9 brass block (Ra: 0.04 um)-on-steel ring (Ra: 0.08 um) 311.4 N, mineral

(c) (d)

Fig. 1. Image of a wear particle with transmitted light only
(a), binary image (b), rotated binary image for major and
minor length measurement (c), and convex hull (d).

Image Processing and Quantification

Images of wear debris are captured so that debris morphology
is processed by imaging techniques and quantified with
numerical parameters. For two-dimensional imaging, the
image acquisition equipment consists of an optical microscope,
a high resolution CCD camera, a frame grabber, and an image
processing and analysis program. The used oil of each wear
test is mounted on a glass slide. The debris of brass and
aluminum specimens are selected by color and their images are
captured with both transmitted and reflected light. The
morphology of wear debris is irregular and, hence, any
overlapped part cannot be recovered. Wear debris are
sometimes diluted in solution to separate from one another. To
make thresholding easy, the image is also captured without
reflected light, as shown in Fig. 1 (a). After thresholding,
morphological parameters are used to quantify two-
dimensional binary images of debris, as shown in Fig. 2 (b).

Morphological parameters used in this work can be
classified into three categories: size, curvature, and shape, as
follows:

27 pm
(b)
Fig. 2. Two-dimensional binary images of wear debris from
wear test 1 (a) and 2 (b).

* Size: area, perimeter, major and minor length, convex hull
area, convex hull perimeter

¢ Curvature: standard deviation, skewness and kurtosis

* Shape: aspect ratio, roundness, roundness factor,
convexity and solidity

Area and perimeter are measured by counting the number of
the pixels in the binary image of wear debris and then
converted to ym” and pm. Major length and minor length are
determined using Feret’s diameter, which is the maximum
distance between two parallel lines, set at a fixed angle, which
just touch the shape in the position it takes [3]. The angle of the
maximum axis of an object is found out and the object is
rotated by the angle so that the maximum axis lies horizontal,
as shown in Fig. 1 (c). The major and minor length are the
width and height of a rectangle box which just touch the shape.
Convex hull area and convex hull perimeter are measured from
a convex region is drawn by Jarvis’ march [6], which generates
the smallest convex region that completely encloses the target
region, as shown in Fig. 1 (d). Standard deviation, skewness,
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Table 2. Data sets

Data  Source of wear debris Difference in wear conditions

1 wear test 1 + 2 normal load

2 wear test 2 + 3 normal load

3 wear test 1 + 3 normal load

4 wear test 4 + 5 normal load

5 wear test 5 + 6 normal load

6 wear test 4 + 6 normal load

7 wear test 1 + 4 contact geometry
8 wear test 2 + 5 contact geometry
9 wear test 3 + 6 contact geometry
10 wear test 2 + 7 surface roughness
11 wear test 2 + 9 oil

12 wear test § + 9 material

and kurtosis are calculated from the octal sequence, and these
values are used to compare the curvatures of objects [4]. The
shape of debris is characterized in terms of elongation and
ruggedness using aspect ratio (major length/minor length),
roundness (7 length’/4 area), roundness factor (7 length¥/4
area), convexity (convex hull perimeter/perimeter) and solidity
(area/convex hull area). Curvature analysis is applied to
quantify the smoothness of debris outline. The border of debris
is traced counterclockwise from pixel to pixel and movement is
recorded by octal sequence which represents the relative angle
of the next pixel from the last one [7]. The curvature pattern,
which the octal sequence is transformed into, is characterized
with standard deviation, skewness, and kurtosis [4]. In this
work, debris morphology is quantified with morphological
parameters except for surface texture and thickness.

Data Sets

Wear debris are collected from each wear test and their images
are quantified with the 14 morphological parameters. Data sets,
each of which includes the values of 14 morphological
parameters for each wear debris, are made from harvested
wear debris from 9 wear tests. Data 1, 2, 3, ..., 12 are made by
combining two data sets from the original 9 data sets so that
one test condition is different in each data set, as shown in
Table 2. In the data 1, 2, 3, ..., 12, difference of wear condition
is the controlling parameter which is responsible for the
change of wear debris formation. Discriminant analysis is
applied to classify wear debris from two different wear
conditions with respect to different levels of normal load in
data 1-6, contact geometry in data 7-9, surface roughness in
data 10, oil in data 11 and material in data 12.

Classification
Two-dimensional binary images of wear debris in wear tests 1

and 2 are shown in Fig. 2. It can be visually recognized that the
wear debris from wear tests 1 and 2 are somewhat different

due to the difference in wear conditions. However, it is highly
unlikely that the criteria of distinguishing wear debris from
wear test 1 from those of wear test 2 can be made based on
individual judgment. For objective assessment, discriminant
analysis can be applied to make a discriminant classifier with
which wear debris can be statistically classified into wear test 1
or 2. In this study, wear debris are sorted into previously
defined wear conditions by parametric and nonparametric
discriminant methods of which difference is that parametric
discriminant methods depend on distributional assumptions but
nonparametric discriminant methods do not. When the
distributional assumptions are not satisfied or unknown,
nonparametric discriminant methods are usually used. The
power of the parametric discriminant methods is attenuated by
the violations of the underlying assumptions, but it is hard to
tell which method offers better results.

When the distribution within each group is assumed to be
multivariate normal, a parametric discriminant method can be
used to develop a discriminant function. The discriminant
function, also known as a classification criterion, can be based
on either the individual within-group covariance matrices or
the pooled covariance matrix. Nonparametric discriminant
methods are based on nonparametric estimates of group-
specific probability densities. Either a kernel method or the k-
nearest-neighbor method can be used to generate a
nonparametric density estimate in each group and to produce a
classification criterion. The kernel density-uniform, normal,
Epanechnikov, biweight, and triweight-in the kernel method
and the value of k in the k-nearest-neighbor method should be
chosen according to each data. In this study, the k-nearest-
neighbor method is used to generate a nonparametric density
estimate in each group and to produce a classification criterion,
since the optimal value of k can be available through few trial-
and-error. The k-nearest-neighbor rule classifies wear debris by
assigning it the label most frequently represented among the k
nearest samples [7]. After several different values of k are tried
for each original 9 data set, k is fixed to 3 to give the best
classification accuracy.

Parametric and nonparametric discriminant analysis are
performed with all the 14 morphological parameters and a
subset of parameters chosen from stepwise discriminant
analysis. The stepwise discriminant analysis selects the subset
of parameters to produce a good discrimination model using
forward selection, backward elimination, or stepwise selection.
The set of variables is assumed to be multivariate normal with
a common covariance matrix. The significance level of 0.15 is
used for both adding variables in the forward selection mode
and retaining variables in the backward elimination mode. The
models selected by the stepwise discriminant analysis are not
necessarily the best possible models. In the selection of
variables for entry, only one variable can be entered into the
model at each step. The selection process does not take into
account the relationships among all the variables. Some
important variables could be excluded in the process. Thus,
stepwise discriminant analysis should be used in combination
with knowledge of data in selecting a discrimination model. In
alternative way, orthogonalization can be used to make
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Table 3. Classification accuracy by parametric and
nonparametric discriminant analysis with 14 morphological
parameters

Classification accuracy (%)

Data ' _Pgrametric . . anparametric '
discriminant analysis  discriminant analysis
1 73.4+135 69.9+ 18.0
2 652+122 6151210
3 80.6+11.2 772+ 14.6
4 924+ 74 89.9+12.0
5 57.0+17.6 53.4+229
6 91,6+ 64 772+ 14.6
7 85.8x+ 7.7 80.1+15.8
8 98.6+ 3.1 972+ 82
9 939+ 8.6 943+ 11.1
10 74.8 £12.0 799+ 162
11 993+ 20 100.0+ 0.0
12 993+ 1.6 100.0+ 2.8

unselected variable independent from the selected ones.

Classification accuracy and standard error are calculated by
jackknifing and leave-one-out crossvalidation [8,9]. When
there is a sample {X,, X5, X3, ..., X,}, the jackknife technique,
which is used for estimating the bias and standard error of an
estimate [8], focuses on the samples that leave out one
observation at a time:

s Xits Xitly vens xn) (1)

fori=1,2, ..., n, called jackknife samples. The ith jackknife

Xg = (X1, Xa5 e

sample consists of the data set with the ith observation
removed. Let q, be the ith jackknife replication of g,
classification accuracy. Each g, is calculated by leave-one-out
cross-validation, which is performed as follows:

(a) Split the data into n-1(total number of sample after
jackknifing) parts.

(b) For the kth part, calculate classification accuracy, q]i(
using the other n-2 parts as the training set and use kth
part as the test set.

(¢) Do the above fork = 1,2, ..., n-1.

Based on the above procedure,

n-1

1 k
di) = 77 IR 2
S k=1

The jackknife estimate of standard error is defined by

n-1« 2
SEjack = JT z (Q(i)—q(')) > 3

i=1

where

1 n
q() = 3 z 9y -

i=1

Given an estimate classification accuracy q and an estimated
standard error SEjack, the usual 90% confidence interval for q
is

q1.6455E;,, @

where 1.645 comes from a standard normal table.

Table 4. The subset of morphological parameters selected by stepwise discriminant analysis: AR=area, PE=perimeter, MA=major
length, MI=minor length, HA=convex hull area, HP=convex hull perimeter, ST=standard deviation, SK=skewness, KU=kurtosis,
AS=aspect ratio, RF=roundness factor, RO=roundness, CO=convexity, SO=solidity

Morphological parameters

Effect Data size curvature shape
A P M M H H S S K A R R C S
R E A I A P T K 8] R F 0 0 O
1 * * * * * * * * * * *
2 * * * * * * #* * *
3 # * * * * 3k * * * * *
load 4 . . . . . .
5 % * * % * %
6 * * * * * * * * * * * *
7 * * * * * * * *
contact geometry 8 * * * * *
9 * * * * *
surface roughness 10 * * * * * * #* * *
oil 11 * * * * * *
material 12 * * * * * * *
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Table 5. Classification accuracy by parametric and
nonparametric discriminant analysis with the subset of
morphological parameters selected by stepwise discriminant
analysis

Classification accuracy (%)

Data Parametric Nonparametric
discriminant analysis  discriminant analysis
1 747+ 7.8 7731126
2 65.7+£17.3 62.8+16.0
3 834+ 9.1 83.0+ 99
4 89.6+ 8.9 935+ 8.0
5 61.7+11.0 59.1+14.2
6 923+ 6.7 923+ 58
7 872+ 5.8 832+11.4
8 98.6+ 2.0 994+ 54
9 950 4.6 965+ 4.0
10 745+ 6.6 753+114
11 993+ 1.2 1000+ 0.0
12 993+ 1.2 1000+ 1.2

With the 14 morphological parameters, the classification
accuracy of parametric and nonparametric discriminant
analysis is similar, as shown in Table 3. Stepwise discriminant
method is applied to select a subset of morphological
parameters, as presented in Table 4. When the subset of
morphological parameters is used, the classification accuracy
of both parametric and nonparametric discriminant method is
generally slightly improved, as shown in Table 5.

Conclusions

It is demonstrated that wear debris of different categories can
be statistically classified according to wear conditions without
subjective individual judgment. Wear debris are generated
under various test conditions and their two-dimensional binary
images are quantified with 14 morphological parameters.
Discriminant analysis is employed to classify wear debris

based on the morphological parameters of two-dimensional
binary images of debris morphology. The classification
accuracy of discriminant methods is summarized as follows:

(1) The classification accuracy of all discriminant analysis
is good enough to classify wear debris into wear
conditions using two-dimensional binary images of
wear debris.

(2) The classification accuracy of parametric and
nonparametric discriminant method is similar with
respect to both the 14 morphological parameters and the
subset of morphological parameters selected by
stepwise discriminant analysis.

(3) The classification accuracy of parametric and
nonparametric  discriminant method is generally
improved for the subset of morphological parameters
selected by stepwise discriminant analysis compared
with the 14 morphological parameters.
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