• Title/Summary/Keyword: Wear model

Search Result 560, Processing Time 0.027 seconds

Experimental Study on the Wear Effects of a Brush Seal in DN 2.5million in a 250℃ High - temperature Steam Environment (DN 250만 250℃고온 스팀환경에서 운전되는 단열 브러쉬 실 마모효과에 관한 실험적 연구)

  • Ha, YunSeok;Ha, TaeWoong;Lee, YoungBok
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.99-105
    • /
    • 2019
  • This study presents an experimental investigation of the wear and oxidation of the bristles of a brush seal in a super-heated steam environment. We construct a model reflecting normal force and radial interference to predict the amount of wear. To monitor the volume loss of the bristle induced by the swirl phenomenon of the rotor, we measure the clearance between the rotor and the brush seal by using a non-contact 3-D device. We calculate the area by using the area-wise measurement method. Considering the obvious brush seal wear variables, we use two disks with different roughness($Ra=0.1{\mu}m$ and $100{\mu}m$) to determine the effect of roughness on wear. Considering an actual steam turbine, we utilize a steam generator and super-heater to generate a working fluid (0.95MPa, 523.15K) that has high kinetic energy. We observe the abrasion of the bristles in the hot steam environment through a scanning electron microscope image. This study also conducted energy dispersive X-ray (EDX) analysis for a qualitative evaluation of local chemistry. The results indicate that the wear and elimination of bristles occur on the disk with high roughness, and the weight increases due to oxidation. Furthermore these results, reveal that the bristle oxidation is accelerated more under super-heated steam conditions than under conditions without steam.

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

Case study: application of NAT (New Abrasion Tester) for predicting TBM disc cutter wear and comparison with conventional methods (TBM 디스크 커터 마모 예측에 대한 NAT의 현장 적용 및 기존 방법과의 비교)

  • Kim, Dae-Young;Shin, Young-Jin;Jung, Jae-Hoon;Kang, Han-Byul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1091-1104
    • /
    • 2018
  • Wear prediction of TBM disc cutters is a very important issue during design as well as construction stages for hard rock TBMs as the cutter head intervention is directly related to the time and cost of tunneling. For that, some methods such as NTNU, CSM and Gehring models were used to predict disc cutter wear and intervention interval. There are however some problems to be addressed in these models in terms of accuracy and time for testing, so that a NAT (New Abrasion Tester) model has been developed in order to achieve simplicity and reliability together at the same time (Farrokh and Kim, 2018). On the basis, the proposed NAT model has been applied to ${\bigcirc}{\bigcirc}$ project in Korea. A comparative study was performed to compare with the conventional methods and as a result the NAT model showed a very good agreement with actual cutter life. The NAT model will be further applied to other projects to establish credibility.

A Fixed Amount Compensation Plan for a Tool Wear Process (마모공정에 대한 정량 보정계획)

  • 최인수;이민구
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.233-240
    • /
    • 1996
  • A fixed amount compensator is proposed for a process with a linear tool wear function. A Cost model is constructed which involve process adjustment cost and quality loss. Symmetric and asymmetric quadratic functions of the deviation of a quality measurement from the nominal target value are considered as the quality loss functions. Methods of finding optimal values of initial setting and compensation limit are presented and a numerical example is given.

  • PDF

Investigation of Thermo-mechanical Behavior of Work Roll and Roll Life in Hot Strip Rolling

  • C.G.Sun;Yun, C.S.;Chung, J.S.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.161-175
    • /
    • 1997
  • The effects of various process paramenters on the detailed aspects of the thermo-mechanical behavior of work roll and on the roll life are investigated via a series of process simulation, using a mathematical model presented previously. The process conditions are discussed that are favorable or optimal in terms of reducing roll wear in the front finishing stands.

  • PDF

Fracture-mechanical Modeling of Tool Wear by Finite Element Analysis (유한요소해석에 의한 공구마모의 파괴역학적 모델링 연구)

  • Sur, Uk-Hwan;Lee, Yeong-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.135-140
    • /
    • 2004
  • Wear mechanisms may be briefly classified by mechanical, chemical and thermal wear. A plane strain finite element method is used with a new material stress and temperature fields to simulate orthogonal machining with continuous chip formation. Deformation of the workpiece material is healed as elastic-viscoplastic with isotropic strain hardening and the numerical solution accounts for coupling between plastic deformation and the temperature field, including treatment of temperature-dependent material properties. Effect of the uncertainty in the constitutive model on the distributions of strait stress and temperature around the shear zone are presented, and the model is validated by comparing average values of the predicted stress, strain, and temperature at the shear zone with experimental results.

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.229-232
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them..

  • PDF

Brand Relaionship Quality(BRQ) Perceived by Fashion Product Consumers and Its Performance Variables for Fashion Product Types (패션 상품군별 소비자가 인식하는 상표관계본질(BRQ)과 성과요인 간의 인과모형 차이)

  • Chae, Jin-Mie;Rhee, Eun-Young
    • Korean Journal of Human Ecology
    • /
    • v.16 no.1
    • /
    • pp.159-171
    • /
    • 2007
  • The purpose of this research is to analyze the difference of Structural Equation Model which shows the path between BRQ and its performance variables according to purchase product types-fashion brand types, clothing item groups. The subjects were women in their 20s to 40s living in Seoul and Metropolitan areas, and 482 copies of questionnaire were analyzed. Multi-Group Analysis of AMOS 5.0 Package was used to investigate structural equation model according to fashion brand types and clothing item groups. The results of this study were as follows. As for fashion brand types, there appeared to be significant differences between high price brand type and medium-low price brand type for three paths, namely brand satisfaction to brand loyalty, BRQ to brand attitude, and brand attitude to brand loyalty. However the verification of structural equation model according to clothing item groups showed no significant differences between formal wear and informal wear. Consequently, BRQ was proved to affect brand satisfaction and brand loyalty, and brand satisfaction was the important intermediate variable between BRQ and brand loyalty. As consumers were likely to show the difference of structural equation model according to the price of purchase goods, differencial marketing strategy would be suggested.

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.250-253
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them.

The study on the tribological characteristics of the MoS$_{2}$ Bonded film (고체윤활용 MoS$_{2}$ Bonded film의 마찰 마모 특성 연구)

  • 류병진;양승호;김성규;유영석;유인석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04a
    • /
    • pp.122-127
    • /
    • 1996
  • In this paper, the effects of the film tinckness, pre-treatment and testing load on. the tribological characteristics have been studied. During the "Ring on-Disk" testing period silica-gel was used to remove the effect of humidity. As a result, increasing the film thickness revealed prolonged wear life, in the case or reasl the testing loads the dynamic friction coefficient was decreased gradually but in regarding the wear life, an intermideate contact pressure (4kgf/mm${2}$) revealed the maximum value. In regarding the surface protuberance friction an intermediate value of area fraction (60%) revealed maximum wear life. In this paper, the qualitative model in regarding the variation of the friction coefficient andworn depth was presented.presented.

  • PDF