• 제목/요약/키워드: Wear mechanisms

검색결과 159건 처리시간 0.025초

Tribological Behavior of Silicon Carbide Ceramics - A Review

  • Sharma, Sandan Kumar;Kumar, B. Venkata Manoj;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.581-596
    • /
    • 2016
  • A comprehensive review on sliding and solid particle erosion wear characteristics of silicon carbide (SiC) ceramics and SiC composites is provided. Sliding or erosion wear behavior of ceramics is dependent on various material characteristics as well as test parameters. Effects of microstructural and mechanical properties of SiC ceramics are particularly focused to understand tribological performance of SiC ceramics. Results obtained between varieties of pairs of SiC ceramics indicate complexity in understanding dominant mechanisms of material removal. Wear mechanisms during sliding are mainly divided in two groups as mechanical and tribochemical. In solid particle erosion conditions, wear mechanisms of SiC ceramics are explained by elastic-plastic deformation controlled micro-fracture on the surface followed by radial-lateral crack propagation beneath the plastic zone.

미끄럼 마찰하에서의 베어링간의 마모 diagram과 마모기구 (Wear diagram and Wear Mechanisms of Bearing Steel in Frictional Sliding)

  • 임대순;박성길;조성재;방건웅;문한규
    • Tribology and Lubricants
    • /
    • 제6권1호
    • /
    • pp.108-115
    • /
    • 1990
  • Wear diagrams, which are the three dimensional representations of the dependence of the wear rate on the applied pressure and the sliding speed, were constructed with the pin on ring type wear test results using 52100 wear couples. The pressure and speed ranges from 0.45 MPa to 45.30 MPa and from 0.012 m/sec to 0.12 (0.120)m/sec, respectively. The results show the mild to severe transition, which suggests the change of the wear mechanisms as a function of the pressure and sliding speed. The SEM micrographs of the corresponding worn area shows clearly that different wear mechanisms dominate.

Sliding Wear Behavior of Plasma Sprayed Zirconia Coatingagainst Silicon Carbide Ceramic Ball

  • Le Thuong Hien;Chae Young-Hun;Kim Seock Sam;Kim Bupmin;Yoon Sang-bo
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.66-74
    • /
    • 2004
  • The sliding wear behavior of $ZrO_2-22wt\%MgO\;(MZ)\;and\;ZrO_2-8wt\%Y_2O_3\;(YZ)$ deposited on a casting aluminum alloy with bond layer (NiCrCoAlY) by plasma spray against an SiC ball was investigated under dry test conditions at room temperature. At all load conditions, the wear mechanisms of the MZ and the YZ coatings were almost the same. The wear mechanisms involved the forming of a smooth film by material transferred on the sliding surface and pullout. The wear rate of the MZ coating was less than that of the YZ coating. With an increase normal load the wear rate of the studied coatings increased. The SEM was used to examine the sliding surfaces and elucidate likely wear mechanisms. The EDX analysis of the worn surface indicated that material transfer was occurred from the SiC ball to the disk. It was suggested that the material transfer played an important role in the wear performance.

  • PDF

Al2O3에서 미끄럼시의 마모 및 마모천이 기구 (Wear and Wear Transition Mechanisms During Sliding in Al2O3)

  • 조성재;김종집;한준희;문한규
    • 한국세라믹학회지
    • /
    • 제26권1호
    • /
    • pp.51-58
    • /
    • 1989
  • Wear and wear transition mechanisms during sliding as a function of time in Al2O3 have been studied to understand the wear behaviour of brittle ceramic materials. Commercial Si3N4 ball was rotated against flat Al2O3 specimens which were hot pressed and polished using upto 1${\mu}{\textrm}{m}$ diamond paste. Paraffin oil was used as a lubricant. Experimental data show that wear of Al2O3 is separated into distinct two stages, i.e., initial stage of slow wear and final stage of rapid wear. Microstructural observations at worn surface show that wear occurs through grooving and grain pull-out in the initial and final stage respectively. TEM observations beneath the worn surfaces show that grain pull-out starts to occur by the propagation of grain boundary cracks induced by dislocation pile-up throughthe surface.

  • PDF

충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델 (Wear Progress Model by Impact Fretting in Steam Generator Tube)

  • 이정근;박치용;김태룡;조선영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1684-1689
    • /
    • 2007
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progression model for impact-fretting wear has been investigated and proposed. The proposed wear progression model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

  • PDF

충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델 (Wear Progress Model by Impact Fretting in Steam Generator Tube)

  • 박치용;이정근;김태룡
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.817-822
    • /
    • 2008
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progress model for impact-fretting wear has been investigated and proposed. The proposed wear progress model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

PMMA(Poly Methyl Methacrylate) 코팅층 두께 및 적용하중에 따른 마멸기구 분석 (Effects of thickness and applied load on wear mechanisms of PMMA (Poly Methyl Methacrylate) coating layers)

  • 강석하;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.152-155
    • /
    • 2004
  • Effects of sliding speed, applied load, counterpart radius and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a sol-gel technique with two different thicknesses, $1.5{\mu}m\;and\;0.8{\mu}m$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms were investigated by examining worn surfaces by an SEM. Under most of sliding test conditions, the thicker layer with the thickness of $1.5{\mu}m$ showed lower fiction coefficient than the thinner layer. Effects of sliding speed and counterpart's radius on the frictional behavior were varied depending on the thickness of the coating layer.

  • PDF

TiN 박막 처리될 베어링 볼의 마모 수명 및 메커니즘에 관한 연구 (A Study on Wear Life and Mechanisms of TiN Coated Bearing Balls against Steel Disks)

  • 한지훈;조정우;이영제
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.378-384
    • /
    • 2000
  • This paper presents the results of the repeated sliding tests to determine the wear-life of TiN coated AISI 52100 bearing balls deposited by PVD method and to show the wear mechanisms of those. The sliding tests were carried out using a ball-on-disk tribometer under ambient conditions. The coefficient of friction, wear volume and the cycles to failures of TiN coated bearing balls were measured with different normal loads and roughness of lower specimens. On the wear-life diagram, the normal loads and the cycles to failure showed the good linear relation on log-log coordinate. With a decreasing normal load, the diagram showed that the wear-limits, at which the coated bearing balls survived more than 4000cycles were under 0.1N of the normal load.

  • PDF

프레팅 조건하에 있는 증기 발생기 세관재의 스틱-슬립 영역별 마멸 메커니즘 규명 (Investigation of Wear Mechanisms of Tube Materials for Nuclear Steam Generators due to Stick-Slip Behavior under Fretting Conditions)

  • 이영제;정성훈;박치용
    • Tribology and Lubricants
    • /
    • 제21권1호
    • /
    • pp.33-38
    • /
    • 2005
  • Fretting is the oscillatory motion with very small amplitudes, which usually occurs between two solid surfaces in contact. Fretting wear is the removal of material from contacting surfaces through fretting action. Fretting wear of steam generator tubes in nuclear power plant becomes a serious problem in recent years. The materials for the tubes usually are Inconel 690 (I-690) and Inconel 600 (I-600). In this paper, fretting wear tests for I-690 and I-600 were performed under various applied loads in water at room temperature. Results showed that the fretting wear loss of I-690 and I-600 tubes was largely influenced by stick-slip. The fretting wear mechanisms were the abrasive wear in slip regime and the delamination wear in stick regime. Also, I-690 had somewhat better wear resistance than I-600.

상대재의 거칠기에 따른 실리카 입자강화 나노 복합재료의 마찰 및 마모에 관한 실험적 연구 (An experimental study of the friction and wear on counterpart roughness of silica particle reinforced nano composites)

  • 김형진;이정규;고성위
    • 수산해양기술연구
    • /
    • 제50권2호
    • /
    • pp.162-168
    • /
    • 2014
  • The friction and wear characteristics of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The volume fraction of silica particles was 19%. The cumulative wear volume and wear rate of these materials on counterpart roughness were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, debonding of particles, fracture of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase with increase of sliding distance. The wear rate of these composites tested indicated low value as increasing the sliding distance.