• Title/Summary/Keyword: Wear Mechanism

Search Result 461, Processing Time 0.022 seconds

Influence of Temperature on the Fretting Wear of Advanced Nuclear Fuel Cladding Tube against Supporting Grid (온도 상승이 개량형 핵연료 피복관과 지지격자 사이의 프레팅 마멸에 미치는 영향)

  • Lee Young-Ze;Park Yong-Chang;Jeong Sung-Hoon;Kim Jin-Seon;Kim Yong-Hwan
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.144-148
    • /
    • 2006
  • The experimental investigation was performed to find the associated changes in characteristics of fretting wear with various water temperatures. The fretting wear tests were carried out using the zirconium alloy tubes and the grids with increasing the water temperature. The tube materials in water of $20^{\circ}C,\;50^{\circ}C\;and\;80^{\circ}C$ were tested with the applied load of 20 N and the relative amplitude of $200{\mu}m$. The worn surfaces were observed by SEM, EDX analysis and 2D surface profiler. As the water temperature increased, the wear volume was decreased, but oxide layer was increased on the worn surface. The abrasive wear mechanism was observed at water temperature of $20^{\circ}C$ and adhesive wear mechanism occurred at water temperature of $50^{\circ}C,\;80^{\circ}C$. As the water temperature increased, surface micro-hardness was decreased, but wear depth and wear width were decreased due to increasing stick phenomenon. Stick regime occurred due to the formation of oxide layer on the worn surface with increasing water temperatures

Effect of Coating Layer Hardness on the Wear Characteristics of Diesel Engine Cylinder liner-Piston Ring (디젤엔진 실린더 라이너-피스톤 링의 코팅 층 강도에 따른 마모특성 연구)

  • Jang, J.H.;Kim, J.H.;Kim, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.343-349
    • /
    • 2008
  • The wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. This study will discuss characteristics of wear between hard and soft piston ring coatings with running surface of cylinder liner. Detailed tribological analysis by using Pin-on-Disk(POD) testing machine describes the lubricity mechanism between piston ring coatings and cylinder liner at different temperature with and without oil. The effect of surface roughness of the cylinder liner on the friction coefficient and wear amount of piston ring coatings will also be analyzed. To simulate scuffing mechanism between piston ring and cylinder liner, accelerated lab testing was performed. This study will provide the data from tribological testing of hard and soft piston ring coatings against cylinder liner. Furthermore, the microstructures and morphological features of the surface and the near-surface materials during wear will be investigated. From the scuffing test by using POD testing machine, scuffing mechanisms for the soft and hard coating will be analyzed and experimentally confirmed.

Development of Fuel Rod Fretting Wear Tester (핵연료봉 프레팅마멸 시험기 개발)

  • 김형규;하재욱;윤경호;강흥석;송기남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.245-251
    • /
    • 2001
  • A fretting wear tester is developed for experimental study on the fuel fretting problem of light water reactor. The feature of the developed tester is it can simulate the existence of gap between spring and fuel rod as well as different contacting force including the just-contact condition (0 N on the contact). Used are a servo-motor, an eccentric cylinder and lever mechanism for driving system. A spacer grid cell is constituted with four strap segments (each segment has a spring). This fretting wear tester can also be used as a fatigue tester of a spacer grid spring with the frequency of more than 10 Hz. It is required to simulate the frequency of the vibrating fuel rod due to flow-induced vibration in a reactor. In fretting wear test, up to two span-length of a fuel cladding tube can be accommodated. A specimen of cladding tube of one span-length is specially designed, which can be extended for two-span test. For .fatigue test, a device for clamping the spring fixture is installed additionally, Presently, the tester is designed for the condition of air environment and room temperature. The variation of the reciprocal distance is measured to check the stability of input force, which will be exerted to the cladding (for fretting wear. test) and the spring (for fatigue test) specimen.

  • PDF

The Experiment of Flow Induced Vibration in PWR RCCAs

  • Kim, Sang-Nyung;Cheol Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.291-299
    • /
    • 2001
  • Recently, severe wear on the shutdown rod cladding of Ulchin Nuclear Power Plant #1, #2 were observed by the Eddy Current Test(E.C.T.). In particular, the wear at the sixth card location was up to 75%. The test results indicated that the Flow Induced Vibration(F.I.V.) might be the cause of the fretting wear resulting from the contact between Rod Cluster Control Assemblies(RCCAs) and their spacing cards(guide plates) arranged in the guide tube. From reviewing RCCAs fretting wear repots and analyzing the general characteristics of F.I.V. mechanism in the reactor, geometric layout and flow conditions around the control rod, it is concluded that the turbulence excitation is the most probable vibration mechanism of RCCA. To identify the governing mechanism of RCCA vibration, an experiment was performed for a representative rod position in which the most serious fretting wear experienced among the six rod positions. The experimental rig was designed and set up to satisfy the governing nondimensional numbers which are Reynolds number and mass damping parameter. The vibration amplitude measurement by the non-contact laser displacement sensor showed good agreements in the frequency and the maximum wearing(vibration) location with Ulchin E.C.T. results and Framatome report, respectively. The sudden increase in the vibration amplitude was sensed around the 6th guide plate with mass flow rate variation. Comparing the similitude rod behaviour with the idealized response of a cylinder in flow induced vibration, it was found that he dominant mechanism of vibration was transferred from turbulence excitation to periodic shedding at the mass flow ate 90ι/min. Also the critical velocity of the vibration in RCCAs was determined and the vibration can be prevented by reducing the bypass flow rate below the critical velocity.

  • PDF

Wear Analysis of the Ti-N Coated Punch in Piercing According to the Volume of Production (생산수량에 따른 Ti-N 코팅 펀치의 마멸해석)

  • 황상홍;고대철;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.149-157
    • /
    • 2000
  • Tool wear in the shearing process such as blanking, piercing and trimming is very important, because it has great effects on the dimensional accuracy, working efficiency and economy. Most of tools in the shearing process have the coated layer at surface fur good wear and corrosion resistance. When the surface of tool is teated, the wear Phenomena of coated surface layer and inner layer may be different. This paper describes a computer modelling technique by the finite element method in order to investigate the wear mechanism and to predict the wear profile of Ti-N coated tool in piercing process according to the volume of Production. Wear coefficients of the coated layer and inner layer are obtained through Pin-on-Disk wear test, respectively. To verify the effectiveness of the suggested technique, the technique is applied to wear analysis in piercing recess of piston pin and simulation results are compared with experimental ones.

  • PDF

On the Abnormal Wear of Cylinder Liners and Piston Rings of the Marine Diesel Engine (박용(舶用) 디이젤기관(機關)의 실린더 라이너 및 피스턴 링의 이상마모(異常摩耗)에 관(關)하여)

  • Tae-Choon,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.1
    • /
    • pp.95-102
    • /
    • 1971
  • Since the fuel oil of the bunker C grade, which is commonly burnt in the large marine diesel engine, causes the corrosive wear of cylinder liners and piston rings, a cylinder oil of high alkality is frequently used to prevent the wear. This practice, however, brings us an another problem to cause the abnormal wear. In this study the author made an investigation of the mechanism of the abnormal wear by the experiments surveying the influences of the alkality of a cylinder oil and the temperature of cylinder wall on the wear. The major results obtained from this study are as follows; A cylinder oil of low alkality is clearly effective for the preventation of the abnormal wear. Therefore, it is recommended that, prio to using a cylinder oil of high alkality, a cylinder oil of low alkality should be used until bringing an end to the initial wear. It is also observed that the abnormal wear depends largely on the temperature of the cylinder wall, that is, the higher the temperature goes up the severer the wear grows.

  • PDF

Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum (구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo)

  • Bang, Woong-Ho;Kang, Choon-Sik;Park, Jae-Hyun;Kweon, Young-Gak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF

Wear and friction characteristics of a carbon fiber composite against specular counterpart (탄소 섬유 복합재의 경면 상대재에 대한 마찰 및 마모 특성)

  • YANG BYEONG-CHUN;KOH SUNG-WI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.390-394
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite were selected. Wren sliding took place against smooth and hard counterpart, the highest wear resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

  • PDF

Distribution Characteristics of Wear Particles from Material of Machine Elements in Lubricant condition (윤활조건에 따른 기계부품용 소재에서 발생된 마멸입자의 분포 특성)

  • Cho, Yon-Sang;Jun, Sung-Jae;Kim, Young-Hee;Park, Heung-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1607-1612
    • /
    • 2007
  • It necessarily follows that wear particles are generated through a friction and wear in a mechanical moving system. The wear particles are relative to the failure and the life of machine elements directly. To analyze the wear particle, its shape characteristics were calculated quantitative values such as diameter, roundness and fractal parameters by digital image processing. In this study, the histograms of shape parameters of wear particles were used for the purpose of analyzing the distribution of wear particles in various conditions. We consider that the histogram of shape parameter can be effectively represented to study a wear mechanism.

  • PDF

Wear Characteristics of Atomic force Microscope Tip (Atomic Force Microscope Tip 의 마멸특성에 관한 연구)

  • 정구현;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.189-195
    • /
    • 2003
  • Atomic Force Microscope (AFM) has been widely used in micro/nano-scale studies and applications for. the last few decade. In this work, wear characteristics of silicon-based AFM tip was investigated. AFM tip shape was observed using a high resolution SEM and the wear coefficient was approximately calculated based on Archard's wear equation. It was shown that the wear coefficient of silicon and silicon nitride were in the range of ${10}^{-1}$~${10}^{-3}$ and ${10}^{-3}$~${10}^{-4}$, respectively. Also, the effect of relative humidity and sliding distance on adhesion-induced tip wear was discussed. It was found that the tip wear has more severe for harder test materials. Finally, the probable wear mechanism was analyzed from the adhesive and abrasive interaction point of view.